留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预积炭改性ZSM-5分子筛及其苯与合成气烷基化性能研究

刘秀全 赵志仝 唐明兴 徐红 代璞 葛晖 李学宽

刘秀全, 赵志仝, 唐明兴, 徐红, 代璞, 葛晖, 李学宽. 预积炭改性ZSM-5分子筛及其苯与合成气烷基化性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024023
引用本文: 刘秀全, 赵志仝, 唐明兴, 徐红, 代璞, 葛晖, 李学宽. 预积炭改性ZSM-5分子筛及其苯与合成气烷基化性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024023
LIU Xiuquan, ZHAO Zhitong, TANG Mingxing, XU Hong, DAI Pu, GE Hui, LI Xuekuan. Study of pre-coking modified ZSM-5 molecular sieve and its benzene and syngas alkylation properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024023
Citation: LIU Xiuquan, ZHAO Zhitong, TANG Mingxing, XU Hong, DAI Pu, GE Hui, LI Xuekuan. Study of pre-coking modified ZSM-5 molecular sieve and its benzene and syngas alkylation properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024023

预积炭改性ZSM-5分子筛及其苯与合成气烷基化性能研究

doi: 10.19906/j.cnki.JFCT.2024023
基金项目: 国家自然科学基金(22078351,22072173,U1910202),山西省自然科学基金青年科学研究项目(20210302124465),国家重点研发计划“新型合成气制可降解塑料关键技术”(2023YFB4103300),山西省重点研发计划“高品质的环烷烃润滑基础油制备技术”(202102090301005)和师市重大科技揭榜挂帅项目“生物可降解塑料 PBS 关键技术的研究开发与示范” (2022JB02)资助
详细信息
    通讯作者:

    E-mail: zhaozhitong@tyut.edu.cn

    gehui@sxicc.ac.cn, Tel: 13613519362

  • 中图分类号: TQ536.9

Study of pre-coking modified ZSM-5 molecular sieve and its benzene and syngas alkylation properties

Funds: The project was supported by National Natural Science Foundation of China (22078351, 22072173, U19100202) , Natural Science Foundation for Young Scientists of Shanxi Province (20210302124465), National Key Research and Development Program (2023YFB4103300), Key Research and Development Program of Shanxi Province (202102090301005), the 8th Division of Xinjiang Production and Construction Corps, Science and Technology Project of Shihezi City (2022JB02).
  • 摘要: 苯与合成气的烷基化反应旨在利用非石油资源生产甲苯、二甲苯等烷基苯,本工作采用甲醇蒸汽预积炭制备一系列的ZSM-5分子筛,并与ZnCrOx复合形成双功能催化剂,探索对苯和合成气烷基化制烷基苯的影响。通过对预积炭时间的考察,发现适当的预积炭能显著提高ZSM-5分子筛的催化性能。在450 ℃、4.0 MPa的反应条件下,预积炭改性24 h的催化剂苯转化率达到20.18%。对预积炭改性的ZSM-5分子筛和反应后的复合催化剂进行分析,表明预积炭改变了分子筛的酸性。预积炭覆盖了ZSM-5分子筛上的一些B酸位点,降低了B酸/L酸比,从而提高苯的转化率。最后,通过烃池机理对苯与合成气烷基化反应的失活机理进行合理推测。
  • 图  1  不同预积炭时间改性ZSM-5分子筛的热重曲线

    Figure  1  Thermogravimetric curves of modified ZSM-5 molecular sieves with different pre-accumulation times

    图  2  不同预积炭时间改性ZSM-5分子筛的NH3-TPD(a)和Py-FTIR谱图(b)

    Figure  2  NH3-TPD plots (a) and Py-FTIR plots (b) of modified ZSM-5 molecular sieves with different pre-accumulated carbon times

    图  3  不同预积炭时间改性ZSM-5分子筛的XRD谱图

    Figure  3  XRD patterns of modified ZSM-5 molecular sieves with different pre-accumulation times

    图  4  不同预积炭时间改性ZSM-5 分子筛的N2吸附-脱附等温线

    Figure  4  N2 adsorption-desorption isotherms of modified ZSM-5 molecular sieves with different pre-accumulation times

    图  5  不同预积炭改性ZSM-5分子筛和ZnCrOx复合催化剂上苯与合成气烷基化反应性能

    Figure  5  Reaction performance of benzene with syngas alkylation over different preaccumulated carbon modified ZSM-5 molecular sieves and ZnCrOx composite catalysts. (a) CO conversion and selectivity of gas phase products, (b) benzene conversion and selectivity of liquid phase products

    图  6  在100 h内ZnCrOx/ZSM-5-0H的CO转化率及气相产物选择性(a)和苯转化率及液相选择性(c);ZnCrOx/ZSM-5-24H的CO转化率及气相产物选择(b)和苯转化率及液相选择性(d)

    Figure  6  CO conversion and gas-phase product selectivity (a) and benzene conversion and liquid-phase selectivity (c) of ZnCrOx/ZSM-5-0H over 100 h; CO conversion and gas phase product selectivity (b) and benzene conversion and liquid phase selectivity (d) of ZnCrOx/ZSM-5-24H over 100 h

    图  7  ZSM-5-24H(a)和ZnCrOx/ZSM-5-24H反应后 (b)的TG-MS谱图(m/z=44为CO2

    Figure  7  TG-MS plots of ZSM-5-24H (a) and ZnCrOx/ZSM-5-24H after reaction (b) (m/z=44 for CO2)

    图  8  ZSM-5-0H(a)、ZSM-5-24H(b)和ZnCrOx/ZSM-5-24H反应后(c)的拉曼共聚焦成图像

    Figure  8  Raman confocal imaging of ZSM-5-0H (a), ZSM-5-24H (b) and ZnCrOx/ZSM-5-24H after reaction (c)

    图  9  ZSM-5-0H、ZSM-5-24H和ZnCrOx/ZSM-5-24H反应后的拉曼光谱谱图

    Figure  9  Raman spectra of ZSM-5-0H, ZSM-5-24H and ZnCrOx/ZSM-5-24H after reaction

    图  10  不同预积炭时间改性ZSM-5分子筛提取物的GC-MS谱图

    Figure  10  GC-MS plots of modified ZSM-5 molecular sieve extracts with different pre-carbon build-up times

    图  11  不同预积炭时间改性ZSM-5分子筛和ZnCrOx复合催化剂反应后提取物的GC-MS谱图

    Figure  11  GC-MS plots of extracts after the reaction of modified ZSM-5 molecular sieves and ZnCrOx composite catalysts with different pre-accumulation time

    图  12  ZSM-5-0H、ZSM-5-24H及其反应3和100 h后的复合催化剂提取物的GC-MS谱图

    Figure  12  GC-MS plots of ZSM-5-0H, ZSM-5-24H and their bifunctional catalysts after 3 and 100 h of reaction

    图  13  苯与合成气烷基化反应中复合催化剂的失活机理示意图

    Figure  13  Schematic mechanism of deactivation of composite catalysts in the reaction of benzene with syngas alkylation

    表  1  不同预积炭时间改性ZSM-5分子筛的酸性

    Table  1  Acidity of modified ZSM-5 molecular sieves with different pre-carbon build-up times

    Sample NH3-TPD/(μmol·g−1) Py-FTIR/(μmol·g−1)
    weak medium and strong total brønsted lewis B/L
    ZSM-5-0H 126 154 280 113 75 1.54
    ZSM-5-12H 123 146 269 64 94 0.68
    ZSM-5-24H 125 118 243 33 64 0.51
    ZSM-5-36H 126 103 229 20 50 0.40
    下载: 导出CSV

    表  2  不同预积炭时间改性ZSM-5 分子筛的孔道参数

    Table  2  Pore parameters of modified ZSM-5 molecular sieves with different pre-accumulation times

    Sample $S_{{\mathrm{BET}}}^{\mathrm{a}} $/(m2·g−1) $S_{{\mathrm{meso}}}^{\mathrm{b}} $/(m2·g−1) $S_{\mathrm{micro}}^{\mathrm{c}} $/(m2·g−1) $v_{\mathrm{total}}^{\mathrm{d}} $/(cm3·g−1) $v_{\mathrm{micro}}^{\mathrm{c}} $/(cm3·g−1)
    ZSM-5 313.9 187.5 126. 4 0.354 0.162
    ZSM-5-12H 296.8 171.3 125.5 0.352 0.162
    ZSM-5-24H 300.6 184.5 116.1 0.345 0.157
    ZSM-5-36H 291.6 177.2 114.4 0.334 0.151
    a: BET method; b: Smeso=SBET-Smicro; c: t-plot method; d: Volume adsorbed at p/p0=0.99.
    下载: 导出CSV
  • [1] 张一成, 王洪学, 章序文, 等. 甲醇制芳烃反应的催化研究进展[J]. 化工进展,2016,35(3):801−806.

    ZHANG Yicheng, WANG Hongxue, ZHANG Xuwen, et al. Advances in the catalysis of methanol to aromatics reaction[J]. Chem Ind Eng Prog,2016,35(3):801−806.
    [2] Cheng K, Zhou W, Kang J, et al. Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [3] Settle A E, Berstis L, Rorrer N A, et al. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds[J]. Green Chem,2017,19(15):3468−3492. doi: 10.1039/C7GC00992E
    [4] Yang F, Zhong J, Liu X, et al. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite[J]. Appl Energy,2018,226:22−30. doi: 10.1016/j.apenergy.2018.05.093
    [5] Gao B, Ding C, Wang J, et al. Construction of a tandem HZSM-5 with CuZnAl catalyst for alkylation of benzene with syngas[J]. New J Chem,2020,44(6):2471−2478. doi: 10.1039/C9NJ05273A
    [6] Shen K, Qian W, Wang N, et al. Centrifugation-free and high yield synthesis of nanosized H-ZSM-5 and its structure-guided aromatization of methanol to 1, 2, 4-trimethylbenzene[J]. J Mater Chem A,2014,2(46):19797−19808. doi: 10.1039/C4TA04444D
    [7] Tukur N M, Al-Khattaf S. Comparison studies of xylene isomerization and disproportionation reactions between SSZ-33, TNU-9, mordenite and ZSM-5 zeolite catalysts[J]. Chem Eng J,2011,166(1):348−357. doi: 10.1016/j.cej.2010.11.004
    [8] Schmidt F, Hoffmann C, Giordanino F, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. J Catal,2013,307:238−245. doi: 10.1016/j.jcat.2013.07.020
    [9] Adebajo M O, Howe R F, Long M A. Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor[J]. Catal Today,2000,63(2):471−478.
    [10] 翟岩亮, 张少龙, 张络明, 等. 不同B, Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报,2019,35(11):1248−1258.

    ZHAI Yanliang, ZHANG Shaolong, ZHANG Luoming, et al. Effect of B and Al Distribution in ZSM-5 Zeolite on Methanol to Propylene Reaction Performance[J]. Acta Phys Chim Sin,2019,35(11):1248−1258.
    [11] Li N, Zhang Y Y, Chen L, et al. Synthesis and application of HZSM-5@silicalite-1 core–shell composites for the generation of light olefins from CH3Br[J]. Microporous Mesoporous Mater,2016,227:76−80. doi: 10.1016/j.micromeso.2016.02.017
    [12] Bauer F, Chen W H, Ernst H, et al. Selectivity improvement in xylene isomerization[J]. Microporous Mesoporous Mater,2004,72(1):81−89.
    [13] Wang L, Qi J, Jiao H, et al. The guiding role of pre-coking on the coke deposition over ZSM-5 in methanol to propylene[J]. R Soc Open Sci,2019,6(9):190218. doi: 10.1098/rsos.190218
    [14] Liu J, Xu H, Dong J, et al. Alkylbenzene synthesis from benzene and syngas over a ZnCrO x/beta bifunctional catalyst[J]. React Chem Eng,2022,7(6):1447−1460. doi: 10.1039/D2RE00026A
    [15] Guisnet M. “Coke” molecules trapped in the micropores of zeolites as active species in hydrocarbon transformations[J]. J Mol Catal A: Chem,2002,182-183:367−382. doi: 10.1016/S1381-1169(01)00511-8
    [16] Bauer F, Chen W H, Bilz E, et al. Surface modification of nano-sized HZSM-5 and HFER by pre-coking and silanization[J]. J Catal,2007,251(2):258−270. doi: 10.1016/j.jcat.2007.08.009
    [17] Kubo K, Iida H, Namba S, et al. Effect of steaming on acidity and catalytic performance of H-ZSM-5 and P/H-ZSM-5 as naphtha to olefin catalysts[J]. Microporous Mesoporous Mater,2014,188:23−29. doi: 10.1016/j.micromeso.2014.01.002
    [18] Gołąbek K, Tarach K A, Góra-Marek K. Xylenes transformation over zeolites ZSM-5 ruled by acidic properties[J]. Spectrochim Acta, Part A,2018,192:361−367. doi: 10.1016/j.saa.2017.11.028
    [19] Lu Y, Wang D, Yang P, et al. Coupling ZnxCd1−xS nanoparticles with graphene-like MoS2: superior interfacial contact, low overpotential and enhanced photocatalytic activity under visible-light irradiation[J]. Catal Sci Technol,2014,4(8):2650−2657. doi: 10.1039/C4CY00331D
    [20] Fyfe C A, Kennedy Gordon J, De Schutter C T, et al. Sorbate-induced structural changes in ZSM-5 (silicalite)[J]. J Chem Soc, Chem Commun,1984,(8):541. doi: 10.1039/c39840000541
    [21] Wu H, Liu F, Yi Y, et al. Catalytic and deactivated behavior of SAPO-34/ZSM-5 composite molecular sieve synthesized by in-situ two-step method[J]. J Mater Res Technol,2021,15:1844−1853. doi: 10.1016/j.jmrt.2021.09.017
    [22] Bibby D M, Milestone N B, Patterson J E, et al. Coke formation in zeolite ZSM-5[J]. Journal of Catalysis,1986,97(2):493−502. doi: 10.1016/0021-9517(86)90020-5
    [23] Bauer F, Kanazirev V, Vlaev L, et al. Coke formation on ZSM-5 catalysts. Koksbildung in ZSM-5-Katalysatoren[J]. Germany: N. p,1989,41:7.
    [24] 蒋云涛. ZSM-5分子筛催化剂上甲醇制丙烯反应—失活路径研究及其工艺设计[D]. 浙江大学, 2017.

    JIANG Yuntao. Research on the reaction and deactivation pathways and process design of methanol to propylene on ZSM-5 zeolite catalyst[D]. Zhejiang, Zhejiang University, 2016)
    [25] Han T, Xu H, Liu J, et al. One-Pass Conversion of Benzene and Syngas to Alkylbenzenes by Cu–ZnO–Al2O3 and ZSM-5 Relay[J]. Catal Lett,2022,152(2):467−479. doi: 10.1007/s10562-021-03617-5
    [26] Okkel L G, Fenelonov V B, Romannikov V N, et al. Coke distribution in high zeolites of the ZSM-5 type[J]. Kinet. Catal , 1992.
    [27] Pradhan A R, Lin T S, Chen W H, et al. EPR and NMR Studies of Coke Induced Selectivation over H–ZSM-5 Zeolite during Ethylbenzene Disproportionation Reaction[J]. J Catal,1999,184(1):29−38. doi: 10.1006/jcat.1999.2431
    [28] Hassan F, Wang J, Chigada P I, et al. Deactivation during 1-Hexene Isomerization over Zeolite Y and ZSM5 Catalysts under Supercritical Conditions[J]. Ind. Eng. Chem Res,2011,50(12):7161−7171. doi: 10.1021/ie101876f
    [29] Chua Y T, Stair P C. An ultraviolet Raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite H-MFI[J]. J Catal,2003,213(1):39−46. doi: 10.1016/S0021-9517(02)00026-X
    [30] Peng C, Zhai Y, Hornung A, et al. Promoting effect of ZSM-5 catalyst on carbonization via hydrothermal conversion of sewage sludge[J]. ACS Sustainable Chem Eng,2018,6(7):9461−9469. doi: 10.1021/acssuschemeng.8b02012
    [31] Arstad B, Nicholas J B, Haw J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc,2004,126(9):2991−3001. doi: 10.1021/ja035923j
    [32] Hwang A, Bhan A. Deactivation of zeolites and zeotypes in methanol-to-hydrocarbons catalysis: Mechanisms and circumvention[J]. Acc Chem Res,2019,52(9):2647−2656. doi: 10.1021/acs.accounts.9b00204
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  13
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-04-29
  • 录用日期:  2024-04-29
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回