留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production

YIN Xue-mei XIE Xian-mei WU Xu AN Xia

殷雪梅, 谢鲜梅, 吴旭, 安霞. 有机蒙脱土负载镍催化剂上乙醇重整制氢[J]. 燃料化学学报, 2016, 44(6): 689-697.
引用本文: 殷雪梅, 谢鲜梅, 吴旭, 安霞. 有机蒙脱土负载镍催化剂上乙醇重整制氢[J]. 燃料化学学报, 2016, 44(6): 689-697.
YIN Xue-mei, XIE Xian-mei, WU Xu, AN Xia. Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 689-697.
Citation: YIN Xue-mei, XIE Xian-mei, WU Xu, AN Xia. Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 689-697.

有机蒙脱土负载镍催化剂上乙醇重整制氢

基金项目: 

The project was supported by the National Natural Science Foundation of China 51541210

and the Natural Science Foundation of Youths of Shanxi Province, China 2013021008-4

详细信息
  • 中图分类号: TQ426

Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production

Funds: 

The project was supported by the National Natural Science Foundation of China 51541210

and the Natural Science Foundation of Youths of Shanxi Province, China 2013021008-4

More Information
  • 摘要: 采用浸渍法制备了有机改性蒙脱土 (OMt) 负载的Ni/有机蒙脱土 (Ni/OMt) 催化剂, 用于乙醇重整制氢; 通过XRD、FT-IR、H2-TPR、SEM、XPS和氮吸附等手段对催化剂进行了表征分析.结果表明, 与未改性的蒙脱土负载的Ni催化剂 (Ni/MMT) 相比, 有机改性可显著提高其比表面积、孔容和金属Ni的分散度, 降低碳沉积量, 改善Ni/MMT催化剂的稳定性.Ni/OMt催化剂表现出较高的乙醇重整制氢催化性能, 在773K下反应30 h, 乙醇转化率保持在100%, 氢气选择性为70%;而Ni/MMT催化剂在反应10 h即开始失活, 碳沉积严重, 同时产生副产物乙烯和乙醛.使用十六烷基三甲基溴化铵 (CTAB) 改性可促进Ni高分散在MMT层板上, 抑制积炭对活性金属Ni包裹, 提高其乙醇重整氢气选择性、降低乙烯和乙醛的选择性.
  • Figure  1  XRD patterns of MMT and OMt

    Figure  2  XRD patterns of MMT, Ni/MMT and Ni/OMt calcined at 550℃

    Figure  3  FT-IR spectra of MMT, CTAB, OMt and Ni/OMt

    Figure  4  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of the MMT, Ni/MMT and Ni/OMt catalysts

    Figure  5  H2-TPR profiles of the calcined Ni/MMT and Ni/OMt catalysts.

    Figure  6  SEM images of (a) MMT and (b) OMt

    Figure  7  Conversion of ethanol and selectivity to various products under different temperatures for ethanol steam reforming over (a) Ni/MMT and (b) Ni/OMt catalysts

    Figure  8  Catalytic performance of (a) Ni/MMT and (b) Ni/OMt catalysts for ethanol steam reforming at 773K with water/ethanol molar ratio of 3

    Figure  9  XRD patterns of (a) reduced Ni/OMt, (b) reduced Ni/MMT, (c) spent Ni/OMt after reaction, and (d) spent Ni/MMT after ethanol steam reforming reaction

    Figure  10  SEM images of the spent (a) Ni/MMT and (b) Ni/OMt catalysts after the ethanol steam reforming reaction

    Figure  11  C 1s XPS spectra of the spent Ni/MMT and Ni/OMt catalysts after the ethanol steam reforming reaction

    Table  1  Height and assembly mode of the CTA+ ion in the interlayer space of MMT

    Sample d(001)/nm h/nmAssembly mode of CTA+
    MMT1.240.28 -
    OMt2.251.29paraffin-type monolayer, angle of inclination, 29.87°
    note: h, the height of the quaternary ammonium cation in the interlayer space of montmorillonite
    下载: 导出CSV

    Table  2  Textural properties of MMT, Ni/MMT and Ni/OMt catalysts calcined at 823K for 3h

    SampleSurface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    size d/nm
    MMT110.0515.8
    Ni/MMT160.046.8
    Ni/OMt1170.145.5
    下载: 导出CSV

    Table  3  Structural properties of the spent Ni/MMT and Ni/OMt catalysts after the ethanol steam reforming reaction at 773K for 30h

    CatalystSurface area A/(m2·g-1)Pore volume v/(cm3·g-1)Pore size d/nmCoke deposited /%
    Ni/MMT1370.176.150
    Ni/OMt1460.185.520
    下载: 导出CSV
  • [1] MOMIRLAN M, VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. Int J Hydrogen Energy, 2005, 30(7):795-802. doi: 10.1016/j.ijhydene.2004.10.011
    [2] HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A review[J]. Energy Fuels, 2005, 19(5):2098-2106. doi: 10.1021/ef0500538
    [3] BENITO M, SANZ J L, ISABEL R, PADILLA R, ARJONA R, DAZA L. Bio-ethanol steam reforming:Insights on the mechanism for hydrogen production[J]. J Power Sources, 2005, 151(2):11-17. https://www.researchgate.net/profile/L_Daza/publication/222169974_Bio-ethanol_steam_reforming_Insights_on_the_mechanism_for_hydrogen_production/links/00b49527b6b3d4271e000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [4] ARISHTIROVA K, PAWELEC B, NIKOLOV R N, FIERRO J L G, DAMYANOVA S. Promoting effect of Pt in Ni-based catalysis for CH4 reforming[J]. React Kinet Catal Lett, 2007, 91(2):241-248. doi: 10.1007/s11144-007-5139-8
    [5] GUCCIARDI E, CHIODO V, FRENI S, CAVALLARO S, GALVAGNO A, BART J C J. Ethanol and dimethyl ether steam reforming on Rh/Al2O3 catalysts for high-temperature fuel-cell feeds[J]. React Kinet Mech Catal, 2011, 104(1):75-87. doi: 10.1007/s11144-011-0335-y
    [6] IULIANELLI A, LONGO T, LIGUORI S, BASILE A. Production of hydrogen via glycerol steam reforming in a Pd-Ag membrane reactor over Co-Al2O3 catalyst[J]. Asia-Pac J Chem Eng, 2010, 5(1):138-145. doi: 10.1002/apj.v5:1
    [7] YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/γ-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010, 5(6):862-868. doi: 10.1002/apj.v5.6
    [8] BSHISH A, YAKOOB Z, NARAYANAN B, RAMAKRISHNAN R, EBSHISH A. Steam-reforming of ethanol for hydrogen production[J]. Chem Pap, 2011, 65(3):251-266. http://etd.lib.metu.edu.tr/upload/12608680/index.pdf
    [9] LI T T, ZHANG J F, XIE X M, YIN X M, AN X. Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming[J]. Fuel, 2015, 143:55-62. doi: 10.1016/j.fuel.2014.11.033
    [10] ZHOU L, QI X, JIANG X, ZHOU Y, FU H, CHEN H. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports[J].J Colloid Interface Sci, 2013, 392(4):201-205. https://www.researchgate.net/publication/233393973_Organophilic_worm-like_ruthenium_nanoparticles_catalysts_by_the_modification_of_CTAB_on_montmorillonite_supports
    [11] REN S B, WEN H Z, CAO X Z, WANG Z C, LEI P, PAN C X. Promotion of Ni/clay catalytic activity for hydrogenation of naphthalene by organic modification of clay[J]. Chin J Catal, 2014, 35(4):546-552. doi: 10.1016/S1872-2067(14)60028-0
    [12] TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochim Acta, Part A, 2006, 64(2):273-278. doi: 10.1016/j.saa.2005.07.018
    [13] MADEJOVA J, BUJDAK J, JANEK M, KOMADEL P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite[J].Spectrochim Acta Part A, 1998, 54(10):1397-1406. doi: 10.1016/S1386-1425(98)00040-7
    [14] SEVIM A, TANIL A. FT-IR spectra of natural loughlinite (Na-sepiolite) and adsorption of pyrimidine on loughlinite[J]. J Mol Struct, 2004, 705(1/3):147-151. https://www.researchgate.net/publication/229146206_FT-IR_spectra_of_natural_loughlinite_Na-sepiolite_and_adsorption_of_pyrimidine_on_loughlinite
    [15] FLESSNER U, JONES D J, ROZIÈRE J, ZAJAC J, STORARO L, LENARDA M, PAVAN M, JIMÉNEZ-LÓPEZ A, RODRÍGUEZ-CASTELLÓN E, TROMBETTA M, BUSCA G. A study of the surface acidity of acid-treated montmorillonite clay catalysts[J]. J Mol Catal A:Chem, 2001, 168(1/2):247-256. https://www.researchgate.net/publication/244277124_A_study_of_the_surface_acidity_of_acid-treated_montmorillonite_clay_catalysts_Journal_of_Molecular_Catalysis_A_Chemical_1681_247-256?_sg=uuY1LVltb_bqarj0seq6X6JVREXxaFunNuhiv1x33FDPDsYUQKFSCYYnlV7XTnx-PZEqdy8Yq9JvJOCZjPV77w
    [16] GOURNIS D, GEORGAKILAS V, KARAKASSIDES M A, BAKAS T, KORDATOS K, PRATO M. Incorporation of fullerene derivatives into smectite clays:A new family of organic-inorganic nanocomposites[J]. J AmChem Soc, 2004, 126(27):8561-8568. doi: 10.1021/ja049237b
    [17] ZHONG Y H, GU Q F, YIN J, WANG Z G, HE P X. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites[J]. Adv Polym Tech, 2014, 33(2):1-7. https://www.researchgate.net/publication/259534959_Effect_of_Organic_Montmorillonite_Type_on_the_Swelling_Behavior_of_Superabsorbent_Nanocomposites
    [18] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, OUQU R O L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. J Pure Appl Chem, 1985, 57:603-619.
    [19] HAO Q Q, WANG G W, ZHAO Y H, LIU Z T, LIU Z W. Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations[J]. Fuel, 2013, 109:33-42. doi: 10.1016/j.fuel.2012.06.033
    [20] TANKSALE A, BELTRAMINI J, DUMESIC J, LU G. Effect of Pt and Pd promoter on Ni supported catalysts-A TPR/TPO/TPD and microcalorimetry study[J]. J Catal, 2008, 258(2):366-377. doi: 10.1016/j.jcat.2008.06.024
    [21] ZHANG J F, BAI Y X, ZHANG Q D, WANG X X, ZHANG T, TAN Y S. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132(1):211-218.
    [22] FISHTIK I, ALEXANDER A, DATTA R. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. Int J Hydrogen Energy, 2000, 25:31-45. doi: 10.1016/S0360-3199(99)00004-X
    [23] DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. App Catal B:Environ, 2005, 56(1/2):171-186.
    [24] LIBERATORI J W C, RIBEIRO R U, ZANCHET D, NORONHA F B, BUENO J M C. Steam reforming of ethanol on supported nickel catalysts[J]. Appl Catal A:Gen, 2007, 327(2):197-204. doi: 10.1016/j.apcata.2007.05.010
    [25] ZHANG D Y, MA Y, FENG H X, LUO H M, MEN X W, HAO Y. Preparation and characterizationof a carbon/Fly Ash composite Adsorbent[J]. Chin J Appl Chem, 2011, 28(8):942-948.
    [26] SHABAKER J, SIMONETTI D, CORTRIGHT R, DUMESIC J. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies[J]. J Catal, 2005, 231(1):67-76. doi: 10.1016/j.jcat.2005.01.019
    [27] CHOONG C K S, ZHONG Z, LIN H. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3:I. Catalytic stability, electronic properties and coking mechanism[J]. Appl Catal A:Gen, 2011, 407(1):145-154.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-26
  • 修回日期:  2016-03-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-06-10

目录

    /

    返回文章
    返回