Catalytic performance of nickel immobilized on organically modified montmorillonite in the steam reforming of ethanol for hydrogen production
-
摘要: 采用浸渍法制备了有机改性蒙脱土 (OMt) 负载的Ni/有机蒙脱土 (Ni/OMt) 催化剂, 用于乙醇重整制氢; 通过XRD、FT-IR、H2-TPR、SEM、XPS和氮吸附等手段对催化剂进行了表征分析.结果表明, 与未改性的蒙脱土负载的Ni催化剂 (Ni/MMT) 相比, 有机改性可显著提高其比表面积、孔容和金属Ni的分散度, 降低碳沉积量, 改善Ni/MMT催化剂的稳定性.Ni/OMt催化剂表现出较高的乙醇重整制氢催化性能, 在773K下反应30 h, 乙醇转化率保持在100%, 氢气选择性为70%;而Ni/MMT催化剂在反应10 h即开始失活, 碳沉积严重, 同时产生副产物乙烯和乙醛.使用十六烷基三甲基溴化铵 (CTAB) 改性可促进Ni高分散在MMT层板上, 抑制积炭对活性金属Ni包裹, 提高其乙醇重整氢气选择性、降低乙烯和乙醛的选择性.Abstract: Nickel immobilized on organically modified montmorillonite (Ni/OMt) was prepared by impregnation method and used as the catalyst for hydrogen production from ethanol steam-reforming; the Ni/OMt catalyst was characterized by XRD, FT-IR, H2-TPR, SEM, XPS and N2 adsorption-desorption. The results indicate that in comparison with the catalyst of nickel supported on unmodified montmorillonite (Ni/MMT), the Ni/OMt catalyst exhibits higher surface area and pore volume as well as higher nickel dispersion with smaller metallic particle size. For the ethanol steam-reforming over Ni/OMt, the conversion of ethanol keeps at 100%, with a selectivity of 70% to hydrogen during the 30h reaction test at 773K;however, over the unmodified Ni/MMT catalyst, severe carbon deposition is observed after reaction for only 10h, accompanying with catalyst deactivation and the formation of byproducts such as acetaldehyde and ethylene. The modification of MMT with cetyltrimethylammonium bromide (CTAB) can significantly improve the stability of the Ni/OMt catalyst in ethanol steam-reforming and reduce the carbon deposition rate by immobilizing highly dispersed nanoparticle Ni on the interlayers of OMt; the selectivity to ethylene and acetaldehyde is also greatly depressed.
-
Table 1 Height and assembly mode of the CTA+ ion in the interlayer space of MMT
Sample d(001)/nm h/nm Assembly mode of CTA+ MMT 1.24 0.28 - OMt 2.25 1.29 paraffin-type monolayer, angle of inclination, 29.87° note: h, the height of the quaternary ammonium cation in the interlayer space of montmorillonite Table 2 Textural properties of MMT, Ni/MMT and Ni/OMt catalysts calcined at 823K for 3h
Sample Surface area
A/(m2·g-1)Pore volume
v/(cm3·g-1)Average pore
size d/nmMMT 11 0.05 15.8 Ni/MMT 16 0.04 6.8 Ni/OMt 117 0.14 5.5 Table 3 Structural properties of the spent Ni/MMT and Ni/OMt catalysts after the ethanol steam reforming reaction at 773K for 30h
Catalyst Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm Coke deposited /% Ni/MMT 137 0.17 6.1 50 Ni/OMt 146 0.18 5.5 20 -
[1] MOMIRLAN M, VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. Int J Hydrogen Energy, 2005, 30(7):795-802. doi: 10.1016/j.ijhydene.2004.10.011 [2] HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A review[J]. Energy Fuels, 2005, 19(5):2098-2106. doi: 10.1021/ef0500538 [3] BENITO M, SANZ J L, ISABEL R, PADILLA R, ARJONA R, DAZA L. Bio-ethanol steam reforming:Insights on the mechanism for hydrogen production[J]. J Power Sources, 2005, 151(2):11-17. https://www.researchgate.net/profile/L_Daza/publication/222169974_Bio-ethanol_steam_reforming_Insights_on_the_mechanism_for_hydrogen_production/links/00b49527b6b3d4271e000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [4] ARISHTIROVA K, PAWELEC B, NIKOLOV R N, FIERRO J L G, DAMYANOVA S. Promoting effect of Pt in Ni-based catalysis for CH4 reforming[J]. React Kinet Catal Lett, 2007, 91(2):241-248. doi: 10.1007/s11144-007-5139-8 [5] GUCCIARDI E, CHIODO V, FRENI S, CAVALLARO S, GALVAGNO A, BART J C J. Ethanol and dimethyl ether steam reforming on Rh/Al2O3 catalysts for high-temperature fuel-cell feeds[J]. React Kinet Mech Catal, 2011, 104(1):75-87. doi: 10.1007/s11144-011-0335-y [6] IULIANELLI A, LONGO T, LIGUORI S, BASILE A. Production of hydrogen via glycerol steam reforming in a Pd-Ag membrane reactor over Co-Al2O3 catalyst[J]. Asia-Pac J Chem Eng, 2010, 5(1):138-145. doi: 10.1002/apj.v5:1 [7] YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/γ-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010, 5(6):862-868. doi: 10.1002/apj.v5.6 [8] BSHISH A, YAKOOB Z, NARAYANAN B, RAMAKRISHNAN R, EBSHISH A. Steam-reforming of ethanol for hydrogen production[J]. Chem Pap, 2011, 65(3):251-266. http://etd.lib.metu.edu.tr/upload/12608680/index.pdf [9] LI T T, ZHANG J F, XIE X M, YIN X M, AN X. Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming[J]. Fuel, 2015, 143:55-62. doi: 10.1016/j.fuel.2014.11.033 [10] ZHOU L, QI X, JIANG X, ZHOU Y, FU H, CHEN H. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports[J].J Colloid Interface Sci, 2013, 392(4):201-205. https://www.researchgate.net/publication/233393973_Organophilic_worm-like_ruthenium_nanoparticles_catalysts_by_the_modification_of_CTAB_on_montmorillonite_supports [11] REN S B, WEN H Z, CAO X Z, WANG Z C, LEI P, PAN C X. Promotion of Ni/clay catalytic activity for hydrogenation of naphthalene by organic modification of clay[J]. Chin J Catal, 2014, 35(4):546-552. doi: 10.1016/S1872-2067(14)60028-0 [12] TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochim Acta, Part A, 2006, 64(2):273-278. doi: 10.1016/j.saa.2005.07.018 [13] MADEJOVA J, BUJDAK J, JANEK M, KOMADEL P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite[J].Spectrochim Acta Part A, 1998, 54(10):1397-1406. doi: 10.1016/S1386-1425(98)00040-7 [14] SEVIM A, TANIL A. FT-IR spectra of natural loughlinite (Na-sepiolite) and adsorption of pyrimidine on loughlinite[J]. J Mol Struct, 2004, 705(1/3):147-151. https://www.researchgate.net/publication/229146206_FT-IR_spectra_of_natural_loughlinite_Na-sepiolite_and_adsorption_of_pyrimidine_on_loughlinite [15] FLESSNER U, JONES D J, ROZIÈRE J, ZAJAC J, STORARO L, LENARDA M, PAVAN M, JIMÉNEZ-LÓPEZ A, RODRÍGUEZ-CASTELLÓN E, TROMBETTA M, BUSCA G. A study of the surface acidity of acid-treated montmorillonite clay catalysts[J]. J Mol Catal A:Chem, 2001, 168(1/2):247-256. https://www.researchgate.net/publication/244277124_A_study_of_the_surface_acidity_of_acid-treated_montmorillonite_clay_catalysts_Journal_of_Molecular_Catalysis_A_Chemical_1681_247-256?_sg=uuY1LVltb_bqarj0seq6X6JVREXxaFunNuhiv1x33FDPDsYUQKFSCYYnlV7XTnx-PZEqdy8Yq9JvJOCZjPV77w [16] GOURNIS D, GEORGAKILAS V, KARAKASSIDES M A, BAKAS T, KORDATOS K, PRATO M. Incorporation of fullerene derivatives into smectite clays:A new family of organic-inorganic nanocomposites[J]. J AmChem Soc, 2004, 126(27):8561-8568. doi: 10.1021/ja049237b [17] ZHONG Y H, GU Q F, YIN J, WANG Z G, HE P X. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites[J]. Adv Polym Tech, 2014, 33(2):1-7. https://www.researchgate.net/publication/259534959_Effect_of_Organic_Montmorillonite_Type_on_the_Swelling_Behavior_of_Superabsorbent_Nanocomposites [18] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, OUQU R O L. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. J Pure Appl Chem, 1985, 57:603-619. [19] HAO Q Q, WANG G W, ZHAO Y H, LIU Z T, LIU Z W. Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations[J]. Fuel, 2013, 109:33-42. doi: 10.1016/j.fuel.2012.06.033 [20] TANKSALE A, BELTRAMINI J, DUMESIC J, LU G. Effect of Pt and Pd promoter on Ni supported catalysts-A TPR/TPO/TPD and microcalorimetry study[J]. J Catal, 2008, 258(2):366-377. doi: 10.1016/j.jcat.2008.06.024 [21] ZHANG J F, BAI Y X, ZHANG Q D, WANG X X, ZHANG T, TAN Y S. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132(1):211-218. [22] FISHTIK I, ALEXANDER A, DATTA R. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. Int J Hydrogen Energy, 2000, 25:31-45. doi: 10.1016/S0360-3199(99)00004-X [23] DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. App Catal B:Environ, 2005, 56(1/2):171-186. [24] LIBERATORI J W C, RIBEIRO R U, ZANCHET D, NORONHA F B, BUENO J M C. Steam reforming of ethanol on supported nickel catalysts[J]. Appl Catal A:Gen, 2007, 327(2):197-204. doi: 10.1016/j.apcata.2007.05.010 [25] ZHANG D Y, MA Y, FENG H X, LUO H M, MEN X W, HAO Y. Preparation and characterizationof a carbon/Fly Ash composite Adsorbent[J]. Chin J Appl Chem, 2011, 28(8):942-948. [26] SHABAKER J, SIMONETTI D, CORTRIGHT R, DUMESIC J. Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies[J]. J Catal, 2005, 231(1):67-76. doi: 10.1016/j.jcat.2005.01.019 [27] CHOONG C K S, ZHONG Z, LIN H. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3:I. Catalytic stability, electronic properties and coking mechanism[J]. Appl Catal A:Gen, 2011, 407(1):145-154. -