留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炼焦煤的官能团结构分析及其黏结性产生机理

李祥 秦志宏 卜良辉 杨状 沈辰阳

李祥, 秦志宏, 卜良辉, 杨状, 沈辰阳. 炼焦煤的官能团结构分析及其黏结性产生机理[J]. 燃料化学学报, 2016, 44(4): 385-393.
引用本文: 李祥, 秦志宏, 卜良辉, 杨状, 沈辰阳. 炼焦煤的官能团结构分析及其黏结性产生机理[J]. 燃料化学学报, 2016, 44(4): 385-393.
LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 385-393.
Citation: LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 385-393.

炼焦煤的官能团结构分析及其黏结性产生机理

基金项目: 

国家自然科学基金 51274201

国家重点基础研究发展规划 2012CB214900

国家自然科学基金煤炭联合基金 U1361116

详细信息
  • 中图分类号: TQ514

Structural analysis of functional group and mechanism investigation of caking property of coking coal

More Information
  • 摘要: 以11种炼焦煤为研究对象,分别进行FT-IR和黏结指数G测试。采用PeakFit软件对FT-IR谱峰进行分峰拟合和定量计算,研究炼焦煤特征官能团含量与其黏结性间的关系。结果表明,煤黏结性大小与其FT-IR吸收峰密切相关,特别是3 000-2 800和3 700-3 000 cm-1两个吸收带;脂肪族结构是煤黏结性形成的主要决定因素,通常脂肪链越短或支链化程度越高,越有利于煤的黏结性形成;含-OH(或-NH)的氢键缔合结构可以与脂肪链协同作用,共同决定煤的黏结性能。不论煤分子有多大,只要是结构单元缩合度较小而作为桥键的脂肪链较多的结构形式,在热解过程中就会生成大量适度分子量、以结构单元为基元的液相物质。氢键是煤中主要的分子间作用形式,当若干形成氢键的官能团聚集缔合时,其相互作用会更强,甚至会形成类似超分子的结构;在形成胶质体阶段,这类氢键缔合的结构也会被打破,并形成以胶质体液相为主的物质。这些液相物质的存在,有利于胶质体的流动、黏连和固化成为半焦,从而最终获得优越的黏结性。
  • 图  1  煤样的FT-IR谱图

    Figure  1  FT-IR spectra of coal samples

    图  2  煤样BL在FT-IR四区间上的分峰拟合图

    Figure  2  Graphical representation of peak separation in the four regions of FT-IR spectrum of coal BL

    图  3  I4G值关系

    Figure  3  Relationship between I4 and G

    图  4  E16的三维空间图像

    Figure  4  Three-dimensional spatial image of E16

    图  5  E20的三维空间图像

    Figure  5  Three-dimensional spatial image of E20

    图  6  I6I3的关系

    Figure  6  Relationship between I6 and I3

    图  7  I4影响G值的原理示意图

    Figure  7  Mechanism diagram of G value affected by I4

    图  8  I3影响G值的原理示意图

    Figure  8  Mechanism diagram of G value affected by I3

    表  1  煤样的来源矿区及其工业分析、元素分析与黏结指数

    Table  1  Mines,origin,proximate and ultimate analysis and caking index of coal samples

    SpecieMineOriginProximate analysis w/%Ultimate analysis wdaf /%G
    MadAdVdafFCdafCHOaNSt,d
    HBHebiHenan0.3510.5615.9684.0491.114.642.151.640.4516.5
    DYDayouHenan0.7110.4425.4374.5788.865.232.961.481.4684.1
    DXDaxieAnhui0.4610.7532.6867.3288.415.863.491.610.6390.4
    XLXinleiShanxi1.347.6027.6572.3587.525.373.401.502.2182.7
    TTTongtingAnhui1.177.0132.5267.4887.085.884.881.770.3797.2
    BLBailongShanxi0.828.9532.6767.3386.525.525.551.610.8178.9
    YDYaoduShanxi0.4210.3826.3373.6786.265.305.471.601.3687.7
    YCYuchengShanxi0.688.6937.1362.8786.246.065.091.630.9891.4
    JXJinxinShanxi1.9011.1636.2163.7984.256.087.251.680.7418.6
    WSWeishanShandong1.748.4936.3663.6483.505.888.321.690.6169.7
    TYTianyiShanxi1.2610.0533.8666.1483.155.558.541.621.1410.7
    a by difference
    下载: 导出CSV

    表  2  煤样FT-IR吸收峰归属

    Table  2  Bands assignment of FT-IR absorption peaks of coal samples

    Band position σ/cm-1Functional group
    3611free OH groups
    3516OH-π hydrogen bonds
    3350-3470self-associated OH,pyrrolic NH
    3300OH- ether O hydrogen bonds
    3200tightly bound cyclic OH tetramers
    3150OH-N
    3030-3050stretching aromatic C-H
    2950-2850stretching C-H aliphatic,R-CH3 and R2CH2- asymmetric stretching,RCH2- symmetric stretching
    2950RCH3 stretching vibration
    2920R2CH2 stretching vibration
    2890R3CH stretching vibration
    1900-1650residual water vapor
    1700conjugate C=O
    1600-1590(C-H)ar poly aromatic system,aromatic C=C stretching
    1500stretching C-C aromatic
    1450-1440bending C-H aliphatic
    1380-1375symmetric deformation -CH2-(bending)
    1261-1251weak band of C=O stretching
    1091,1031,1010ash in coal
    900-700aromatic bands mainly due to aromatic-carbon-carbon rocking vibrations
    870substituted benzene ring with isolated hydrogen
    814substituted benzene ring with two neighboring hydrogen or angular condensation ring systems
    790CH2- rocking mode of ethyl group
    750benzene ring orto-substituted and meta-substituted and condensed ring systems
    下载: 导出CSV

    表  3  经Peakfit分峰拟合后所得FT-IR吸收峰的相对峰面积(Ⅰ)

    Table  3  Relative peak areas of coal samples separated and calculated by Peakfit(Ⅰ)

    RegionAromatic substitutionOxygen-containing functional groups
    750cm-1790cm-1812cm-1872cm-11033cm-11100cm-11200cm-11300cm-11400cm-11440cm-11600cm-11650cm-1
    HB0.19230.11640.07760.14060.30270.06060.08220.25290.68290.430010.8845
    DY0.21180.07510.07590.10620.74970.06370.17960.28520.47020.744410.5697
    DX0.13980.05380.07360.04290.57180.4274---0.549810.6500
    XL0.16350.18220.06280.10630.13180.32580.23100.17781.20520.387111.0561
    TT0.08390.05170.04780.05980.22000.32720.36200.3305-0.66841-
    BL0.03290.03860.05700.02540.35400.35610.06570.07451.02070.271511.1554
    YD0.14860.03590.05060.05660.65860.14760.20990.4455-0.568810.8207
    YC0.09900.03960.06880.04390.22190.14010.15600.5120-0.458510.9069
    JX0.01300.01000.00990.00780.33580.25510.10360.18620.19560.674010.8858
    WS0.05470.02130.02770.01900.16790.16070.26480.20600.29070.451810.1060
    TY0.06560.02040.02830.00110.31020.12400.24700.29320.74850.278610.3397
    下载: 导出CSV

    表  4  经Peakfit分峰拟合后所得FT-IR吸收峰的相对峰面积(Ⅱ)

    Table  4  Relative peak areas of coal samples separated and calculated by Peakfit(Ⅱ)

    RegionAliphatic functional groupsHydrogen bond
    2850cm-12890cm-12923cm-12950cm-13050cm-13130cm-13200cm-13300cm-13370cm-13440cm-13500cm-13600cm-1
    HB0.12010.08230.20170.06280.13030.37690.75701.50642.36823.78543.25471.7907
    DY0.20140.15330.33210.16130.12410.12610.46170.77541.49311.35510.89540.6264
    DX0.23220.17410.38910.17550.11900.49750.89891.17401.92802.37491.91470.9366
    XL0.17220.12130.28950.11080.28221.85102.19162.49764.22355.29894.15472.1920
    TT0.10090.07550.16580.07840.08500.34020.55620.71671.15091.40761.16310.6336
    BL0.11490.07290.22630.08610.13221.49151.88072.17573.60754.36053.20901.8038
    YD0.15600.11670.25870.11960.17700.38510.94981.31722.07492.54992.08431.0831
    YC0.16330.12210.27320.12710.23970.80391.37071.79562.87403.53402.84921.5636
    JX0.12290.07700.23100.07380.16750.92631.48481.93603.37644.20603.16071.7092
    WS0.07070.05190.11370.05170.08990.30700.45860.54270.80350.97010.83100.4477
    TY0.08650.06180.13790.04670.09080.37580.63120.76521.13541.29441.03290.5346
    下载: 导出CSV

    表  5  FT-IR参数与G值关系的多元线性回归分析

    Table  5  Multiple linear regression analysis on the relationship between FT-IR parameters and G value

    No.Independent variables (xi,i=1,2,3)Radj2No.Independent variables (xi,i=1,2,3)Radj2
    x1x2x3x1x2x3
    E1I1---0.0467E30I1I4I60.9314
    E2I2--0.1768E31I1I5I6-0.1287
    E3I3--0.1100E32I2I3I40.9290
    E4I4--0.7846E33I2I3I5-0.0175
    E5I5--0.0165E34I2I3I60.2171
    E6I6--0.1006E35I2I4I50.7952
    E7I1I2-0.0744E36I2I4I60.9065
    E8I1I3--0.1691E37I2I5I6-0.0561
    E9I1I4-0.7904E38I3I4I50.9397
    E10I1I5--0.0696E39I3I4I60.9297
    E11I1I6--0.1679E40I3I5I60.0264
    E12I2I3-0.0958E41I4I5I60.9191
    E13I2I4-0.7878E42I6*---0.1061
    E14I2I5-0.0746E43I1I6*--0.1767
    E15I2I6-0.0739E44I2I6*-0.0739
    E16I3I4-0.9376E45I3I6*--0.2442
    E17I3I5--0.0813E46I4I6*-0.8537
    E18I3I6--0.0321E47I5I6*-0.0163
    E19I4I5-0.7608E48I1I2I6*-0.0578
    E20I4I6-0.9164E49I1I3I6*-0.3152
    E21I5I6--0.0083E50I1I4I6*0.9474
    E22I1I2I3-0.0333E51I1I5I6*-0.2186
    E23I1I2I40.7704E52I2I3I6*-0.0178
    E24I1I2I5-0.0572E53I2I4I6*0.8647
    E25I1I2I6-0.0058E54I2I5I6*-0.5760
    E26I1I3I40.9346E55I3I4I6*0.9425
    E27I1I3I5-0.2115E56I3I5I6*-0.2101
    E28I1I3I60.2237E57I4I5I6*0.8359
    E29I1I4I50.7704
    下载: 导出CSV
  • [1] YU A B, STANDISH N, LU L. Coal agglomeration and its effect on bulk density[J]. Powder Technol, 1995, 82(2): 177-189. doi: 10.1016/0032-5910(94)02912-8
    [2] NOMURA S, THOMAS K M. The effect of swelling pressure during coal carbonization on coke porosity[J]. Fuel, 1996, 75(2): 187-194. doi: 10.1016/0016-2361(95)00238-3
    [3] SEKI H, KUNAGAI J, MATSUDA M, ITO O, LINO M. Fluidity of coal residues after extraction with mixed solvents[J]. Fuel, 1989, 68(8): 978-982. doi: 10.1016/0016-2361(89)90061-6
    [4] KAM A Y, HIXSON A N, PERIMUTTER D D. The oxidation of bituminous coal. 3. Effect on caking properties[J]. Ind Eng Chem Process Des Dev, 1976, 15(3): 416-422. doi: 10.1021/i260059a012
    [5] LOISON R, FOCH P, BOYER A. Coke: Quality and Production[M]. London: Butterworth, 1989.
    [6] CHEN P, MA J S. Petrographic characteristics of Chinese coals and their application in coal utilization processes[J]. Fuel, 2002, 81(11): 1389-1395. http://documents.tips/documents/petrographic-characteristics-of-chinese-coals-and-their-application-in-coal.html
    [7] DIEZ M A, ALVAREZ R, BARRIOCANAL C. Coal for metallurgical coke production: Qredictions of coke quality and future requirements for cokemaking[J]. Int J Coal Geol, 2002, 50(1): 389-412. https://www.researchgate.net/publication/248517356_Coal_for_metallurgical_coke_production_Predictions_of_coke_quality_and_future_requirements_for_cokemaking
    [8] 秦志宏, 袁新华, 宗志敏, 王永志, 张玉, 魏贤勇. 煤中致粘组分与不粘组分[J]. 煤炭转化, 1998, 21(3): 47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH803.010.htm

    QIN Zhi-hong, YUAN Xin-hua, ZONG Zhi-min, WANG Yong-zhi, ZHANG Yu, WEI Xian-yong. Coking and non-coking components in coals[J]. Coal Convers, 1998, 21(3): 47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH803.010.htm
    [9] 秦志宏, 李兴顺, 陈娟, 张丽英, 侯翠利, 巩涛. 煤的黏结性来源及形成机理[J]. 中国矿业大学学报, 2010, 39(1): 64-69. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201001012.htm

    QIN Zhi-hong, LI Xing-shun, CHEN Juan, ZHANG Li-ying, HOU Cui-li, GONG Tao. Origin and formation mechanism of coal caking property[J]. J China Univ Min Technol, 2010, 39(1): 64-69. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201001012.htm
    [10] FERRARO J R, BASILE L J. Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems(Vol.1)[M]. New York: Academic Press, 1985.
    [11] CHEN P. Significance and application of the caking index of coal-Ten years' review[J]. Fuel Process Technol, 1989, 21(2): 99-115. doi: 10.1016/0378-3820(89)90064-7
    [12] SHUI H F, LI H, CHANG H T, WANG Z H, GAO Z, LEI Z P, REN S B. Modification of sub-bituminous coal by steam treatment: Caking and coking properties[J]. Fuel Process Technol, 2011, 92(12): 2299-2304. doi: 10.1016/j.fuproc.2011.08.001
    [13] QI X Y, WANG D M, XIN H H, QI G S. In situ FT-IR study of real-time changes of active groups during oxygen-free reaction of coal[J]. Energy Fuels, 2013, 27(6): 3130-3136. doi: 10.1021/ef400534f
    [14] QIN Z H, CHEN H, YAN Y J, LI C S, RONG L M, YANG X Q. FT-IR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J].Fuel Process Technol, 2015, 133: 14-19. doi: 10.1016/j.fuproc.2015.01.001
    [15] ODEH A O. Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks[J]. J Fuel Chem Technol, 2015, 43(2): 129-137. doi: 10.1016/S1872-5813(15)30001-3
    [16] XIN H H, WANG D M, QI X Y, QIG S, DOU G L. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra[J]. Fuel Process Technol, 2014, 118: 287-295. doi: 10.1016/j.fuproc.2013.09.011
    [17] RHOADS C A, SENFTLE J T, COLEMAN M M, DAVIS A, PAINTER P C. Further studies of coal oxidation[J]. Fuel, 1983,62(12): 1387-1392. doi: 10.1016/0016-2361(83)90104-7
    [18] COOKE N E, FULLER O M, GAIKWAD R P. FT-IR spectroscopic analysis of coals and coal extracts[J]. Fuel, 1986, 65(9): 1254-1260. doi: 10.1016/0016-2361(86)90238-3
    [19] PAINTER P C, COLEMAN M M, SNYDER R W, MAHAJAN O, KOMATSU M, WALKER P L. Low temperature air oxidation of caking coals: Fourier transform infrared studies[J]. Appl Spectrosc, 1981, 35(1): 106-110. doi: 10.1366/0003702814731842
    [20] RIESSER B, STARSINIC M, SQUIRES E, DAVIS A, PAINTER P C. Determination of aromatic and aliphatic CH groups in coal by FT-IR: 2.Studies of coals and vitrinite concentrates[J]. Fuel, 1984, 63(9): 1253-1261. doi: 10.1016/0016-2361(84)90434-4
    [21] SOBKOWIAK M, REISSER E, GIVEN P, PAINTER P. Determination of aromatic and aliphatic CH groups in coal by FT-IR: 1.Studies of coal extracts[J]. Fuel, 1984, 63(9): 1245-1252. doi: 10.1016/0016-2361(84)90433-2
    [22] KISTER J, GUILIANO M, MILLE G, DOU H. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralization by acid treatment: Analysis by FT-IR and uv fluorescence[J]. Fuel, 1988, 67(8): 1076-1082. doi: 10.1016/0016-2361(88)90373-0
    [23] WANG S Q, CHENG H F, JIANG D, FAN H, SHEN S, BAI H P. Raman spectroscopy of coal component of Late Permian coals from Southern China[J]. Spectrochim Acta, Part A, 2014, 132: 767-770. doi: 10.1016/j.saa.2014.06.003
    SOLOMON P R, CARANGELO R M. FT-IR analysis of coal.1.Techniques and determination of hydroxyl concentrations[J]. Fuel, 1982, 61(7): 663-669. doi: 10.1016/0016-2361(82)90014-X
    SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006, 85(12): 1798-1802. https://www.researchgate.net/publication/244067913_Effect_of_hydrothermal_treatment_on_the_extraction_of_coal_in_the_CS_2NMP_mixed_solvent
    [26] 张科, 姚素平, 胡文瑄, 房洪峰. 煤红外光谱的精细解析及其煤化作用机制[J]. 煤田地质与勘探, 2009, 37(6): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200906004.htm

    ZHANG Ke, YAO Su-ping, HU Wen-xuan, FANG Hong-feng. Analysis on infrared spectra characteristic of coal and discussion of coalification mechanism[J].Coal Geol Explor, 2009, 37(6) : 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200906004.htm
    [27] 罗陨飞. 煤的大分子结构研究--煤中惰质组结构及煤中氧的赋存形态. 北京: 煤炭科学研究总院, 2002. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS200202023.htm

    LUO Yun-fei. Study of coal macromolecular structure: Structure of inertinite and the characteristics of oxygen functional groups in coal. Beijing: China Coal Research Institute, 2002. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJS200202023.htm
    [28] 陈茺, 许学敏, 高晋生, 颜涌捷. 煤中氢键类型的研究[J]. 燃料化学学报, 1998, 26(2): 140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX802.008.htm

    CHEN Chong, XU Xue-min, GAO Jin-sheng, YAN Yong-jie. Type of hydrogen bonds in coal[J]. J Fuel Chem Technol, 1998, 26(2): 140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX802.008.htm
    [29] 李文, 李东涛, 陈皓侃, 李保庆. O-烷基化对煤中氢键的调控及对热解特性的影响[J]. 燃料化学学报, 2003, 31(6): 513-518. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1231.shtml#

    LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing. Regulation of hydrogen bonds in coal through O-methylation and its effect on pyrolysis property[J]. J Fuel Chem Technol, 2003, 31(6): 513-518. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1231.shtml#
    [30] 何晓群, 刘文倾. 应用回归分析[M]. 2版. 北京: 中国人民大学出版社, 2007.

    HE Xiao-qun, LIU Wen-qing. Application of Regression Analysis [M]. 2nd ed. Beijing: China Renmin University Press, 2007.
    [31] 陈德仁, 秦志宏, 陈娟, 华宗琪, 陈冬梅. 煤结构模型研究及展望[J]. 煤化工, 2011, 39(4): 28-31. http://www.cnki.com.cn/Article/CJFDTOTAL-MHGZ201104010.htm

    CHEN De-ren, QIN Zhi-hong, CHEN Juan, HUA Zong-qi, CHEN Dong-mei. Study on the model of coal structure and its prospects[J]. Coal Chem Ind, 2011, 39(4): 28-31. http://www.cnki.com.cn/Article/CJFDTOTAL-MHGZ201104010.htm
    [32] 朱银蕙. 煤化学[M]. 北京: 化学工业出版社, 2005.

    ZHU Yin-hui. Coal Chemistry[M]. Beijing: Chemical Industry Press, 2005.
    [33] ( ZHANG Shuang-quan. Coal Chemistry[M]. 2nd ed. Xuzhou: China University of Mining and Technology Press, 2009.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  83
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-02-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回