留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属赋存形态对水稻秸秆热解过程的影响机制

张玉洁 王焦飞 卫俊涛 白永辉 宋旭东 苏暐光 于广锁

张玉洁, 王焦飞, 卫俊涛, 白永辉, 宋旭东, 苏暐光, 于广锁. 碱金属赋存形态对水稻秸秆热解过程的影响机制[J]. 燃料化学学报(中英文), 2021, 49(6): 752-758. doi: 10.1016/S1872-5813(21)60025-7
引用本文: 张玉洁, 王焦飞, 卫俊涛, 白永辉, 宋旭东, 苏暐光, 于广锁. 碱金属赋存形态对水稻秸秆热解过程的影响机制[J]. 燃料化学学报(中英文), 2021, 49(6): 752-758. doi: 10.1016/S1872-5813(21)60025-7
ZHANG Yu-jie, WANG Jiao-fei, WEI Jun-tao, BAI Yong-hui, SONG Xu-dong, SU Wei-guang, YU Guang-suo. Effect of alkali metal occurrence on the pyrolysis behavior of rice straw[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 752-758. doi: 10.1016/S1872-5813(21)60025-7
Citation: ZHANG Yu-jie, WANG Jiao-fei, WEI Jun-tao, BAI Yong-hui, SONG Xu-dong, SU Wei-guang, YU Guang-suo. Effect of alkali metal occurrence on the pyrolysis behavior of rice straw[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 752-758. doi: 10.1016/S1872-5813(21)60025-7

碱金属赋存形态对水稻秸秆热解过程的影响机制

doi: 10.1016/S1872-5813(21)60025-7
基金项目: 国家自然科学基金(21968024),宁夏回族自治区重点研发计划重大项目(2019BCH01001)和宁夏重点研发项目(引才专项) (2019BEB04037, 2019BEB04001)资助
详细信息
    作者简介:

    张玉洁:zyj19972080@163.com

    通讯作者:

    Tel:0951-2062008,E-mail:wjfdafei@nxu.edu.cn

    gsyu@nxu.edu.cn

  • 中图分类号: TQ536.9

Effect of alkali metal occurrence on the pyrolysis behavior of rice straw

Funds: The project was supported by National Natural Science Foundation of China (21968024), Project of Key Research Plan of Ningxia (2019BCH01001) and Project of Key Research Plan of Ningxia (Special Talent Introduction Project) (2019BEB04037, 2019BEB04001)
  • 摘要: 碱金属是生物质热解过程的重要影响因素。本研究以含不同赋存形态碱金属的水稻秸秆(RS)为研究对象,采用热重-质谱联用仪(TG-MS)和热裂解-气质联用仪(Py-GC/MS)研究其热解特性、小分子气体的释放规律及原位热解焦油组成变化规律,以揭示不同赋存形态碱金属在热解过程中的作用机理。结果表明,随水稻秸秆碱金属脱除程度的提高,热解过程中小分子释放温度向高温区域偏移,碱金属对小分子逸出过程存在催化作用。而不同赋存形态的碱金属对焦油组分的影响不同。水溶性碱金属抑制了醇类物质的产生而促进酮类和醛类的生成。离子交换态碱金属在不同温度下对油品组成的影响不同,在300 ℃热解时抑制了醛类和醚类的产生,促进了酯类和酮类的生成,而热解温度高于400 ℃后则相反。动力学分析表明,水溶性碱金属离子和交换态碱金属均会降低生物质热解活化能。
  • FIG. 717.  FIG. 717.

    FIG. 717.  FIG. 717.

    图  1  样品制备过程示意图

    Figure  1  Samples preparation process

    图  2  洗涤处理前后水稻秸秆在15 ℃/min的升温速率下热解的失重和失重速率曲线

    Figure  2  TG and DTG curves of RS before and after washing at heating rate of 15 °C/min

    图  3  热解过程小分子气体逸出特性

    Figure  3  Escape characteristics of small molecule gases during pyrolysis

    图  4  RS在不同温度下热解所得焦油组分的面积百分比

    Figure  4  Area percentage of tar component produced from pyrolysis of RS at different temperatures

    图  5  RS在不同温度下热解所得焦油中各含氧化合物组分的面积百分比

    Figure  5  Area percentage of tar oxygen-containing component produced from pyrolysis of RS at different temperatures

    图  6  水稻秸秆热解的活化能

    Figure  6  Activation energy of rice straw pyrolysis

    表  1  水稻秸秆的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of RS

    SampleProximate analysis wad /% Ultimate analysis wdaf /%
    MAVFC CHONS
    RS16.769.2269.1614.87 44.506.2445.661.462.15
    RS27.328.3370.6813.6845.316.2543.291.623.54
    RS38.386.5574.5410.5345.296.1443.611.563.40
    RS45.969.4872.9011.6746.106.2343.711.112.85
    下载: 导出CSV

    表  2  水稻秸秆的灰化学组成

    Table  2  Ash compositions of rice straw

    Compositions w/%
    SiO2Al2O3Fe2O3CaONa2OK2OMgOothers
    52.420.550.473.420.6724.563.2714.64
    下载: 导出CSV

    表  3  样品的碱金属及碱土金属元素组成

    Table  3  Element composition of main alkali and alkaline earth metals in samples

    SampleContent wad /%
    KNaCaMgFe
    RS12.100.650.370.180.05
    RS20.610.030.400.080.04
    RS30.020.010.340.020.03
    RS4< 0.01< 0.01< 0.010.010.02
    下载: 导出CSV

    表  4  水稻秸秆热解的活化能

    Table  4  Activation energy of rice straw pyrolysis

    SampleLinear equationsEα/(kJ·mol−1)R2
    RS1y = −21.84x + 26.62181.577760.990
    RS2y = −22.57x + 26.99187.646980.996
    RS3y = −23.22x + 26.64193.051080.984
    RS4y = −26.15x + 31.16217.411100.982
    下载: 导出CSV
  • [1] TURSUN Y, XU S P, WANG G Y, WANG C, XIAO Y H. Tar formation during co-gasification of biomass and coal under different gasification condition[J]. J Anal Appl Pyrolysis,2015,111:191−199. doi: 10.1016/j.jaap.2014.11.012
    [2] MASNADI M S, GRACE J R, BI X T, LIM C J, ELLIS N, LI Y H, WATKINSON A P. From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed[J]. Renewable Energy,2015,83:918−930. doi: 10.1016/j.renene.2015.05.044
    [3] 段会文, 张永奇, 王志青, 李位位, 黄戒介, 赵建涛, 房倚天. 钾和一氧化碳对松木屑快速热解半焦特性的影响[J]. 燃料化学学报,2017,45(7):789−797. doi: 10.3969/j.issn.0253-2409.2017.07.003

    DUAN Hui-wen, ZHANG Yong-qi, WANG Zhi-qing, LI Wei-wei, HUANG Jie-jie, ZHAO Jian-tao, FANG Yi-tian. Effects of potassium and CO atmosphere on properties of biomass chars from flash pyrolysis[J]. J Fuel Chem Technol,2017,45(7):789−797. doi: 10.3969/j.issn.0253-2409.2017.07.003
    [4] 易霜, 何选明, 郑辉, 林红涛, 李翠华, 李冲. 甘蔗渣与褐煤共热解半焦的特性[J]. 化工进展,2016,35(10):3149−3154.

    YI Shuang, HE Xuan-ming, ZHENG Hui, LIN Hong-tao, LI Cui-hua, LI Chong. Characteristics of co-pyrolysis char of sugarcane bagasse and lignite[J]. Chem Ind Eng Prog,2016,35(10):3149−3154.
    [5] 朱谢飞, 李凯, 马善为, 朱锡锋. 生物油蒸馏残渣理化性质及热失重研究[J]. 燃料化学学报,2017,45(1):29−33. doi: 10.3969/j.issn.0253-2409.2017.01.005

    ZHU Xie-fei, LI Kai, MA Shan-wei, ZHU Xi-feng. Physicochemical characteristics and TGA of distillation residues from bio-oil[J]. J Fuel Chem Technol,2017,45(1):29−33. doi: 10.3969/j.issn.0253-2409.2017.01.005
    [6] HU Q, SHEN Y, CHEW J W, GE T, WANG C. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chem Eng J,2020,379:122346. doi: 10.1016/j.cej.2019.122346
    [7] WANG J L, YIN Y N. Fermentative hydrogen production using various biomass-based materials as feedstock[J]. Renewable Sustuinable Energy Rev,2018,92:284−306. doi: 10.1016/j.rser.2018.04.033
    [8] LIU G C, LIAO Y F, WU Y T, MA X Q. Reactivity of Co-doped Ca2Fe2O5 brownmillerite oxides as oxygen carriers for microalgae chemical looping gasification[J]. Int J Hydrog Energy,2019,44(5):2546−2559. doi: 10.1016/j.ijhydene.2018.11.232
    [9] SONG Y C, LI Q T, LI F Z, WANG L S, HU C C, FENG J, LI W Y. Pathway of biomass-potassium migration in co-gasification of coal and biomass[J]. Fuel,2019,239:365−372. doi: 10.1016/j.fuel.2018.11.023
    [10] QUYN D M, WU H W, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel,2002,81(2):143−149. doi: 10.1016/S0016-2361(01)00127-2
    [11] QUYN D M, WU H W, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel,2003,82:587−593. doi: 10.1016/S0016-2361(02)00323-X
    [12] WU Z Q, YANG W C, CHEN L, MENG H, ZHAO J, WANG S Z. Catalytic effects of the typical alkali metal on gaseous products distribution and char structure during co-pyrolysis of low rank coal and lignocellulosic biomass[J]. Energy Procedia,2017,105:102−107. doi: 10.1016/j.egypro.2017.03.286
    [13] OKUNO T, SONOYAMA N, HAYASHI J I, LI C Z, SATHE C, CHIBA T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy Fuels,2005,19(5):2164−2171.
    [14] LI X M, ZHANG H, LIU M J, ZHI L F, BAI J, BAI Z Q, LI W. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. J Fuel Chem Technol,2020,48(8):897−907. doi: 10.1016/S1872-5813(20)30062-1
    [15] DI N G, DE J W, SPLIETHOFF H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen[J]. Fuel Progress Technol,2010,91(1):103−115. doi: 10.1016/j.fuproc.2009.09.001
    [16] ZAMORA F, GONZALEZ M C, DUENAS M T, IRASTORZA A, VELASCO S, IBARBURU I. Thermodegradation and thermal transitions of an exopolysaccharide produced by Pediococcusdamnosus 2.6[J]. J Macromol Sci B,2002,3(41):473−486.
    [17] 王树荣, 骆仲泱. 生物质组分热裂解[M]. 北京: 科学出版社, 2013.

    WANG Shu-rong, LUO Zhong-yang. Pyrloysis of Biomass Components[M]. Beijing: Science Press, 2013.
    [18] VAN H K H, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel,1994,73(6):886−896. doi: 10.1016/0016-2361(94)90283-6
    [19] ZHU J L, JIN L J, LI J G, BAO Z X, LI Y, HU H Q. Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor[J]. Bioresource Technol,2019,290:121739. doi: 10.1016/j.biortech.2019.121739
    [20] WANG J F, MA M, BAI Y H, SU W G, SONG X D, YU G S. Effect of CaO additive on co-pyrolysis behavior of bituminous coal and cow dung[J]. Fuel,2020,265:116911. doi: 10.1016/j.fuel.2019.116911
    [21] XIONG Y K, JIN L J, LI Y, ZHU J L, HU H Q. Hydrogen peroxide oxidation degradation of a low-rank Naomaohu coal[J]. Fuel Process Technol,2020,207:106484. doi: 10.1016/j.fuproc.2020.106484
    [22] MISHRA R K, LU Q, MOHANTY K. Thermal behaviour, kinetics and fast pyrolysis of Cynodondactylon grass using Py-GC/MS and Py-FTIR analyser[J]. J Anal Appl Pyrolysis,2020,150:104887. doi: 10.1016/j.jaap.2020.104887
    [23] WU Z Q, YANG W C, LI Y W, ZHANG B, YANG B L. On-line analysis on the interaction between organic compounds from co-pyrolysis of microalgae and low-rank coal: Thermal behavior and kinetic characteristics[J]. Bioresource Technol,2018,268:672−676. doi: 10.1016/j.biortech.2018.08.074
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  87
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2021-01-04
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回