留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糠醛及其衍生物选择性加氢制备戊二醇的研究进展

谭静静 苏以豪 高宽 崔静磊 王永钊 赵永祥

谭静静, 苏以豪, 高宽, 崔静磊, 王永钊, 赵永祥. 糠醛及其衍生物选择性加氢制备戊二醇的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60036-1
引用本文: 谭静静, 苏以豪, 高宽, 崔静磊, 王永钊, 赵永祥. 糠醛及其衍生物选择性加氢制备戊二醇的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60036-1
TAN Jing-jing, SU Yi-hao, GAO Kuan, CUI Jing-lei, WANG Yong-zhao, ZHAO Yong-xiang. Recent Advances in the Selective Hydrogenation of Furfural and its Derivatives to Pentanediol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60036-1
Citation: TAN Jing-jing, SU Yi-hao, GAO Kuan, CUI Jing-lei, WANG Yong-zhao, ZHAO Yong-xiang. Recent Advances in the Selective Hydrogenation of Furfural and its Derivatives to Pentanediol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60036-1

糠醛及其衍生物选择性加氢制备戊二醇的研究进展

doi: 10.1016/S1872-5813(21)60036-1
基金项目: 国家自然科学基金项目(No.22005182,21703275, U1710221),山西省高等学校科技创新项目(No.2020L0012)和山西省面上青年基金项目(No.201701D221030)资助
详细信息
    通讯作者:

    tanjingjing@sxu.edu.cn

    yxzhao@sxu.edu.cn

  • 中图分类号: O643.3

Recent Advances in the Selective Hydrogenation of Furfural and its Derivatives to Pentanediol

Funds: The work was supported by the National Natural Science Foundation of China(No.22005182, 21703275, U1710221), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2020L0012), Shanxi Provincial Natural Science Foundation of China (No. 201701D221030)
  • 摘要: 1,2-戊二醇(1,2-PeD)和1,5-戊二醇(1,5-PeD)是高附加值精细化学品,用途广泛。以糠醛及其衍生物为原料经催化加氢制备1,2-PeD和1,5-PeD是绿色的生产工艺,具有良好的应用前景和研究价值。本文系统综述了国内外以糠醛及其衍生物糠醇、四氢糠醇为原料制备1,2-PeD和1,5-PeD的研究现状,重点总结了应用于糠醛、糠醇和四氢糠醇催化加氢制备1,2-PeD和1,5-PeD的催化剂,从催化剂类型、不同催化体系辅助酸/碱催化反应机理、活性金属与掺杂过渡金属氧化物间的协同催化、掺杂过渡金属氧化物的酸性以及不同催化体系中催化剂的构效关系等方面进行了详细阐述,并在此基础上对该研究方向的发展趋势进行了展望。为开发新型、高效、稳定催化糠醛及其衍生物加氢催化剂体系提供了理论指导和有益的借鉴。
  • 图  1  糠醛加氢制备1,2-戊二醇和1,5-戊二醇

    Figure  1.  The route of furfural hydrogenation to prepare 1,2-pentanediol and 1,5-pentanediol

    图  2  糠醛在Pt/水滑石催化剂上加氢为1,2-戊二醇的反应路径[1]

    Figure  2.  The reaction pathway of furfural hydrogenation to 1,2-pentanediol on Pt/HT catalyst[1]

    图  3  糠醛在Rh/OMS-2催化剂上加氢制备1,2-戊二醇的反应机理[21]

    Figure  3.  The reaction mechanism of furfural hydrogenation to 1,2-pentanediol over Rh/OMS-2 catalyst[21]

    图  4  Pd/MMT-K-10催化糠醛加氢制备1,2-戊二醇[23]

    Figure  4.  The hydrogenation of furfural to 1,2-pentanediol over Pd/MMT-K-10 catalyst l[23]

    图  5  Cu-Mg3AlO4.5催化剂上进行糠醇氢解反应制备戊二醇的反应路径[25]

    Figure  5.  The hydrogenolysis pathway for furfuryl alcohol to pentanediol over Cu-Mg3AlO4.5 catalyst[25]

    图  6  Cop-Pt/Co2AlO4催化剂催化糠醛转化为1,5-戊二醇的机理图[27]

    Figure  6.  The hydrogenation mechanism of furfural to 1,5-pentanediol over Cop-Pt/Co2AlO4 catalyst[27]

    图  7  Co-TiOy催化剂的形成机制[30]

    Figure  7.  The formation mechanism of Co-TiOy catalyst[30]

    图  8  Rh-ReOx/SiO2催化四氢糠醇氢解为1,5-戊二醇的机理[37]

    Figure  8.  The hydrogenolysis mechanism of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh-ReOx/SiO2[37]

    图  9  Rh-ReOx/C催化剂上四氢糠醇氢解为1,5-戊二醇的机理[39]

    Figure  9.  The hydrogenolysis mechanism of tetrahydrofurfuryl alcohol to 1,5-pentanediol on Rh-ReOx/C catalyst[39]

    图  10  Pt/WO3/ZrO2催化四氢糠醇氢解制1,5-戊二醇反应机理模型[42]

    Figure  10.  The hydrogenolysis mechanism model of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Pt/WO3/ZrO2 catalyst[42]

    图  11  四氢糠醇在Ni-WOx/SiO2催化剂上氢解制备1,5-戊二醇反应机理[44]

    Figure  11.  The hydrogenolysis mechanism of tetrahydrofurfuryl alcohol to 1,5-pentanediol on Ni-WOx/SiO2 catalyst[44]

    表  1  一些代表性催化剂催化糠醛(FA)/糠醇(FFA)加氢制备1,2-戊二醇的比较

    Table  1.   Performance comparison between some representative catalysts of hydrogenolysis FA/FFA to 1,2-PeD

    EntrySubstrateCatalystReaction conditions/
    batch reactor
    Conversion
    x/ %
    Selectivity of
    1,2-PeD s/%
    Yield of
    1,2-PeD y/%
    Ref.
    1FAPt/Al2O3240 ℃, 2 MPa, 2 h43.533.314.5[17]
    2FAPt/CeO2165 ℃, 3 MPa,4 h10059.959.9[18]
    3FAPt/ HT150 ℃, 3 MPa, 6 h10073.073.0[1]
    4FARh/OMS-2160 ℃, 3 MPa,8 h10087.087.0[21]
    5FAPd/MMT-K10220 ℃, 3.5 MPa,5 h10066.066.0[23]
    6FARu/Al2O3200 ℃, 10 MPa, 1 h1003232.0[24]
    7FFARu/MnOx150 ℃, 1.5 MPa, 4 h89.242.137.5[6]
    8FFAPt/CeO2165 ℃, 2 MPa, 24 h10077.077.0[25]
    9FFA10%Cu/Al2O3140 ℃, 8 MPa, 8 h85.848.141.3[2]
    10FFA10%Cu-Mg3AlO4.5140 ℃, 6 MPa, 24 h10045.245.2[22]
    11FFACu0.8Mg5.2Al2O3140 ℃, 4 MPa, 8 h74.15137.8[26]
    下载: 导出CSV

    表  2  一些代表性催化剂催化糠醛(FA)/糠醇(FFA)/四氢糠醇(THFA)加氢制备1,5-戊二醇的比较

    Table  2.   Performance comparison between some representative catalysts of hydrogenolysis FA/FFA/THFA to 1,5-PeD

    EntrySubstrateCatalystReaction conditionsConversion
    x/ %
    Selectivity of
    1,5-PeD s/%
    Yield of 1,5-PeD
    y/%
    Ref.
    1FAPt/Co2AlO4140 ℃, 1.5 MPa, 24 h10027.227.2[27]
    2FAPd-Ir-ReOx/SiO240 ℃(8 h),100 ℃(72 h), 8 MPa10071.471.4[14]
    3FARh-Ir-ReOx/SiO240 ℃(8 h),100 ℃ (72 h), 8 MPa10078.278.2[13]
    4FFACo/TiO2140 ℃, 2.34 MPa,WHSV=5.8 h-110030.330.3[30]
    5FFACu-LaCoO3140 ℃, 6 MPa, 2 h10040.340.3[31]
    6FFA0.1Cu2.9CoAl160 ℃, 4 MPa, 2 h9844.743.8[32]
    7FFANi-Y2O3150 ℃, 2 MPa, 24 h10041.941.9[34]
    8FFANi-La(OH)3150 ℃, 2 MPa, 72 h10055.855.8[35]
    7THFARh-ReOx/SiO2120 ℃, 8 MPa, 24 h968076.8[36]
    9THFARh-MoOx/SiO2100 ℃, 8 MPa, 24 h94.290.385.1[12]
    10THFAIr-ReOx/SiO2100 ℃, 8 MPa, 2 h60.394.256.8[38]
    11THFARh-ReOx/C120 ℃, 3.4 MPa, 4 h47.297.245.9[10]
    12THFARh-MoOx/C120 ℃, 3.4 MPa, 4 h51.691.347.1[10]
    13THFARh/SiO2 + MoO3120 ℃, 6 MPa, 20 h27.980.622.5[11]
    14THFAPt /WO3 @ SiO2220 ℃, 6 MPa, 24 h82.972.960.4[40]
    15THFAPt/WO3/ZrO2150 ℃, 5 MPa, 5 h566536.4[42]
    16THFAPt/Y2O3-WO3-ZrO2150 ℃, 4 MPa, WHSV=0.2 h-1886859.8[43]
    17THFANi-WOx/SiO2250 ℃, 3.4 MPa, 4 h28.747.313.6[44]
    The reaction conditions: Entry 1~3, 5~15 and 17 were carried out in batch reactor, entry 4 and entry 16 were carried out in fix-bed reactor
    下载: 导出CSV
  • [1] MIZUGAKI T, YAMAKAWA T, NAGATSU Y, MAENO Z, MITSUDOME T, JITSUKAWA K, KANEDA K. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustain. Chem. Eng.,2014,2(10):2243−2247. doi: 10.1021/sc500325g
    [2] LIU H, HUANG Z W, KANG H X, XIA C G, CHEN J. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese J. Catal.,2016,37(5):700−710. doi: 10.1016/S1872-2067(15)61080-4
    [3] SCHLAF M. Selective deoxygenation of sugar polyols to α, ω-diols and other oxygen content reduced materials-a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis[J]. Dalton Trans.,2006,39:4645−4653.
    [4] 李静. 四氢糠醇在 Rh(111)表面上 C-O 键氢解的密度泛函理论研究[D]. 河北: 河北科技大学, 2016.

    LI Jing. Density functional theory study on hydrogenolysis of C-O bond on Rh(111) surface with tetrahydrofurfuryl alcohol[D]. Hebei: Hebei University of Science and Technology, 2016.
    [5] BRENTZEL Z J, BARNETT K J, HUANG K, MARAVELIAS P, DUMESIC P, HUBER P. Chemicals from biomass: combining ring-opening tautomerization and hydrogenation reactions to produce 1,5-pentanediol from furfural[J]. ChemSusChem.,2017,10(7):1351−1355.
    [6] ZHANG B, ZHU Y, DING G Q, ZHENG H Y, LI Y W. Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase[J]. Green Chem.,2012,14(12):3402−3409.
    [7] IOELOVICH M. Recent Findings and the Energetic Potential of Plant Biomass as a Renewable Source of Biofuels - A Review[J]. Bioresources,2015,10(1):879−1914.
    [8] VAMVUKA D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview[J]. Int. J. Energy. Res.,2011,35(10):835−862. doi: 10.1002/er.1804
    [9] RPEREZ R F, FRAGA M A. Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose[J]. Green Chem.,2014,16(8):3942−3950. doi: 10.1039/C4GC00398E
    [10] CHIA M, PAGÁN-TORRES Y J, HIBBITTS D, HIBBITTS D, TAN Q H, PHAM H N, DATYE A K, NEUROCK M, DAVIS R J, DUMESIC J A. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J]. J. Am. Chem. Soc.,2011,133(32):12675−12689. doi: 10.1021/ja2038358
    [11] GUAN J, PENG G M, CAO Q, MU X D. Role of MoO3 on a Rhodium Catalyst in the Selective Hydrogenolysis of Biomass-Derived Tetrahydrofurfuryl Alcohol into 1,5-Pentanediol[J]. J. Phys. Chem. C.,2014,118(44):25555−25566. doi: 10.1021/jp508313y
    [12] KOSO S, UEDA N, SHINMI Y, OKUMURA K, KIZUKA T, TOMISHIGE K. Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2[J]. J Catal.,2009,267(1):89−92. doi: 10.1016/j.jcat.2009.07.010
    [13] LIU S B, AMADA Y, TAMURA M, NAKAGAWA Y, TOMISHIGE K. Performance and characterization of rhenium-modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol[J]. Catal. Sci. Technol.,2014,4(8):2535−2549. doi: 10.1039/C4CY00161C
    [14] LIU S B, AMADA Y, TAMURA M, NAKAGAWA Y, TOMISHIGE K. One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst[J]. Green Chem.,2014,16(2):617−626. doi: 10.1039/C3GC41335G
    [15] KOCH O, KOECKRITZ A, KANT M, MARTIN A, SCHOENING A, ARMBRUSTER U, BARTOSZEK M, EVERT S, LANGE B, BIENERT R. Method for Producing 1, 2-Pentanediol. US [P], 14115706, 2014.
    [16] KAUFMANN W E, ADAMS R. The use of platinum oxide as a catalyst in the reduction of organic compounds. IV. Reduction of furfural and its derivatives[J]. J. Am. Chem. Soc.,1923,45(12):3029−3044.
    [17] BHOGESWARARAO S, SRINIVAS D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts[J]. J Catal.,2015,327:65−77. doi: 10.1016/j.jcat.2015.04.018
    [18] TONG T, XIA Q N, LIU X H, WANG Y Q. Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability[J]. Catal Commun.,2017,101:129−133. doi: 10.1016/j.catcom.2017.08.005
    [19] MITSUDOME T, NOUJIMA A, MIKAMI Y, MIZUGAKI T, JITSUKAWA K, KANEDA K. Supported gold and silver nanoparticles for catalytic deoxygenation of epoxides into alkenes[J]. Angew. Chem. Int. Ed.,2010,49(32):5545−5548.
    [20] KAZANSKY V B, BOROVKOV V Y. The unusual properties of small platinum particles supported on basic carriers[J]. Catal. Sci. Technol.,1994,92:275−280.
    [21] PISAL D S, YADAV G D. Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS2 Catalyst[J]. ACS Omega,2019,4(1):1201−1214.
    [22] LIU H L, HUANG Z W, ZHAO F, CUI F, LI X M, XIA C G, CHEN J. Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a non-precious Cu-Mg3AlO4.5 bifunctional catalyst[J]. Catal. Sci. Technol.,2016,6(3):668−671. doi: 10.1039/C5CY01442E
    [23] DATE N S, CHIKATE R C, ROH H S, RODE C V. Bifunctional role of Pd/MMT-K 10 catalyst in direct transformation of furfural to 1,2-pentanediol[J]. Catal. Today.,2018,309:195−201. doi: 10.1016/j.cattod.2017.08.002
    [24] GÖTZ D, LUCAS M, CLAUS P. C-O bond hydrogenolysis vs. C=C group hydrogenation of furfuryl alcohol: towards sustainable synthesis of 1,2-pentanediol[J]. React. Chem. Eng.,2016,1:161−164. doi: 10.1039/C5RE00026B
    [25] TONG T, LIU X H, GUO Y, BANIS M N, HU Y F, WANG Y Q. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol[J]. J Catal.,2018,365:420−428. doi: 10.1016/j.jcat.2018.07.023
    [26] 卫彩云, 谭静静, 夏晓丽, 赵永祥. 煅烧温度对CuMgAl催化糠醇加氢制戊二醇的影响[J]. 化工学报,2019,70:1409−1419.

    WEI Cai-yun, TAN Jing-jing, ZHAO Yong-xiang. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CIESC Journal,2019,70:1409−1419.
    [27] XU W J, WANG H F, LIU X H, REN J W, WANG Y Q, LU G Z. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chem. Commun.,2011,47(13):3924−3926. doi: 10.1039/c0cc05775d
    [28] MA C Y, MU Z, LI J J, JIN Y G, CHENG J, LU G Q, HAO Z P, QIAO S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene[J]. J. Am. Chem. Soc.,2010,132(8):2608−2613. doi: 10.1021/ja906274t
    [29] ADKINS H, CONNOR R J. The catalytic hydrogenation of organic compounds over copper chromite[J]. Am. Chem. Soc.,1931,53(3):1091−1095. doi: 10.1021/ja01354a041
    [30] LEE J, BURT S P, CARRERO C A, ALBA-RUBIO A C, RO I, O’NEILL B J, KIM H J, JACKSON D H K, KUECH T F, HERMANS I, DUMESIC J A, HUBER G W. Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction[J]. J Catal.,2015,330:19−27. doi: 10.1016/j.jcat.2015.07.003
    [31] GAO F F, LIU H L, HU X, CHEN J, HUANG Z W, XIA C G. Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites[J]. Chinese J. Catal.,2018,39(10):1711−1723. doi: 10.1016/S1872-2067(18)63110-9
    [32] SULMONETTI T P, HU B, LEE S, AGRAWAL P K. JONES C W. Reduced Cu-Co-Al mixed metal oxides for the ring-opening of furfuryl alcohol to produce renewable diols[J]. ACS Sustain. Chem. Eng.,2017,5(10):8959−8969. doi: 10.1021/acssuschemeng.7b01769
    [33] YAO S X, WANG X C, JIANG Y J, WU F, CHEN X G, MU X D. One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2, 6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions[J]. ACS Sustain. Chem. Eng.,2014,2(2):173−180.
    [34] WIJAYA H W, KOJIMA T, HARA T, ICHIKUNI N, SHIMAZU P S. Synthesis of 1,5-pentanediol by hydrogenolysis of furfuryl alcohol over Ni-Y2O3 composite catalyst[J]. ChemCatChem,2017,9(14):2869−2874. doi: 10.1002/cctc.201700066
    [35] WIJAYA H W, SATO T, TANGE H, HARA T, ICHIKUNI N, SHIMAZU S P. Hydrogenolysis of furfural into 1,5-pentanediol by employing Ni-M (M = Y or La) composite catalysts[J]. Chem. Lett.,2017,46(5):744−746. doi: 10.1246/cl.170129
    [36] KOSO S, FURIKADO I, SHIMAO A, MIYAZAWA T, KUNIMORI K, TOMISHIGE K. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. ChemComm.,2009,106:2035−2037.
    [37] KOSO S, NAKAGAWA Y, TOMISHIGE K. Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide[J]. J Catal.,2011,280(2):221−229. doi: 10.1016/j.jcat.2011.03.018
    [38] CHEN K Y, MORI K, WATANABE H, NAKAGAWA Y, TOMISHIGE K. C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts[J]. J Catal.,2012,294:171−183. doi: 10.1016/j.jcat.2012.07.015
    [39] TOMISHIGE K, NAKAGAWA Y, TAMURA M. Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species[J]. Green Chem.,2017,19(13):2876−2924. doi: 10.1039/C7GC00620A
    [40] KUANG B F, ZHANG Q, FANG Y X, BAI Y, QIU S B, WU P, QIN Y L, WANG T J. Ring opening of cyclic ether for selective synthesis of renewable 1,5-pentanediol over Pt/WO3@SiO2 catalysts[J]. Ind. Eng. Chem. Res.,2020,59(20):9372−9381.
    [41] WANG C, LEE J D, JI Y C, ONN T M, LUO J, MURRAY C B, GORTE R J. A study of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Pt-WOx/C[J]. Catal. Lett.,2018,148:1047−1054. doi: 10.1007/s10562-018-2323-6
    [42] FENG S X, NAGAO A, AIHARA T, MIURA H, SHISHIDO T. Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO3/ZrO2 catalysts: Effect of WO3 loading amount on activity[J]. Catal. Today.,2018,303:207−212. doi: 10.1016/j.cattod.2017.08.058
    [43] 杨晓, 陈长林. Y2O3对 Pt /WO3 -ZrO2催化剂催化四氢糠醇加氢制备 1,5-戊二醇的影响[J]. 南京工业大学学报,2019,41(2):149−154.

    YANG Xiao, CHEN Chang-lin. The effect of Y2O3 on Pt /WO3 -ZrO2 catalyst for the hydrogenation of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. Journal of Nanjing Tech University,2019,41(2):149−154.
    [44] SOGHRATI E, POH C K, DU Y H, GAO F, KAWI P S, BORGNA A. C-O hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-Pentanediol Over bi-functional nickel-tungsten catalysts[J]. ChemCatChem.,2018,10(20):4652−4664. doi: 10.1002/cctc.201800783
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回