留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究

徐彬 李嘉卿 谢建军 黄艳琴 阴秀丽 吴创之

徐彬, 李嘉卿, 谢建军, 黄艳琴, 阴秀丽, 吴创之. 等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60045-2
引用本文: 徐彬, 李嘉卿, 谢建军, 黄艳琴, 阴秀丽, 吴创之. 等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60045-2
XU Bin, LI Jia-qing, XIE Jian-jun, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Performance Study on Simultaneous Tar Removal and Bio-syngas Methanation by Combining Catalysis with Nonthermal Plasma[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60045-2
Citation: XU Bin, LI Jia-qing, XIE Jian-jun, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Performance Study on Simultaneous Tar Removal and Bio-syngas Methanation by Combining Catalysis with Nonthermal Plasma[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60045-2

等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究

doi: 10.1016/S1872-5813(21)60045-2
基金项目: 国家自然科学基金(51576200),广东省自然科学基金重大培育项目(2017B030308002),中国科学院洁净能源创新研究院合作基金(DNL180306)和中国科学院可再生能源重点实验室(中国科学院广州能源研究所)(E0290109)资助
详细信息
    作者简介:

    徐彬:xubin@ms.giec.ac.cn

    通讯作者:

    E-mail:xiejj@ms.giec.ac.cn

  • 中图分类号: TK6

Performance Study on Simultaneous Tar Removal and Bio-syngas Methanation by Combining Catalysis with Nonthermal Plasma

Funds: This wok was supported by the National Natural Science Foundation of China (51576200), the Natural Science Foundation of Guangdong Province of China (2017B030308002), the DNL Cooperation Fund, CAS (DNL180306) and CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion (E0290109)
  • 摘要: 以含甲苯的模拟气化燃气(SGG)为对象,在介质阻挡放电耦合Ni/γ-Al2O3反应器上开展同时甲苯脱除及SGG甲烷化实验研究。考察了反应温度、H2/CO比率、H2O添加的影响。结果表明,等离子体耦合催化可在400°C实现高效的同时甲苯脱除与SGG甲烷化。H2/CO比率为3.2时,甲苯脱除率与焦油脱除率可达100%和97%,CO转化率与CH4选择性可达88%和97%,甲苯脱除与SGG甲烷化过程能量效率可达9.7 g/kWh和17.3 mol/kWh。高H2/CO比率与H2O添加可促进甲苯脱除和SGG甲烷化,降低催化剂积碳量并提升积碳石墨化程度,其中高H2/CO比率还可提升SGG热值,获得高甲苯脱除及SGG甲烷化过程能量效率;而H2O添加会降低热值且难获得高CH4选择性,同时不利于SGG甲烷化过程能量效率的提升。此外,SGG甲烷化会抑制甲苯的脱除,而甲苯因浓度较低对甲烷化过程的影响较小。
  • 图  1  实验装置图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  单催化下甲苯脱除(a)与SGG甲烷化(b)

    Figure  2.  Toluene removal (a) and SGG methanation (b) under plasma alone treatment

    图  3  等离子体耦合催化下甲苯脱除(a)与SGG甲烷化(b)

    Figure  3.  Toluene removal (a) and SGG methanation (b) under plasma catalysis treatment

    图  4  新鲜催化剂、单催化反应后及等离子体耦合催化反应后催化剂的O 1s图谱

    Figure  4.  O 1s spectra over fresh catalyst and catalysts reacted under the catalysis alone and plasma catalysis treatments

    图  5  H2/CO比率对甲苯脱除(a,b)与SGG甲烷化(c,d)的影响

    Figure  5.  Effect of H2/CO ratio on toluene removal (a, b) and SGG methanation (c, d)

    图  6  H2O添加量对甲苯脱除(a,b)与SGG甲烷化(c,d)的影响

    Figure  6.  Effect of H2O addition on toluene removal (a, b) and SGG methanation (c, d)

    图  7  纯N2气氛内的甲苯脱除(a)和无甲苯添加下的SGG甲烷化(b)

    Figure  7.  Toluene removal under pure N2 atmosphere (a) and methanation of SGG without toluene contained (b)

    图  8  不同H2/CO比率(a)及H2O添加量(b)工况下的催化剂拉曼光谱

    Figure  8.  Raman spectra of the catalysts reacted under different H2/CO ratio (a) and H2O addition (b) conditions

    表  1  不同工况反应后催化剂的表面氧物种

    Table  1.   Surface oxygen species derived from O 1s spectra

    ProcessOxygen concentration (%)O′α/Oβ ratio
    OβO′αOα
    Fresh catalyst41.4542.7215.831.03
    Catalyst alone45.4939.3915.130.86
    Plasma catalysis41.5342.4016.071.02
    下载: 导出CSV

    表  2  不同工况下反应60 min后的催化剂积碳量

    Table  2.   Amount of carbon deposition on the catalysts reacted under different conditions for 60min

    ProcessCarbon deposition (wt.%)
    SGG1.38
    H2/CO = 1.50.57
    H2/CO = 2.20.16
    H2/CO = 3.20.10
    10 % H2O addition0.17
    20 % H2O addition0.12
    30 % H2O addition0.03
    下载: 导出CSV

    表  3  400ºC不同工况下的SGG 热值变化及能量效率

    Table  3.   LHV of SGG and energy efficiencies under different conditions operated at 400ºC

    H2/CO ratioH2O addition (%)
    0.81.52.23.2102030
    LHVInlet (MJ/m3)4.435.015.706.344.434.434.43
    Outlet (MJ/m3)4.065.066.017.493.973.833.72
    Growth rate (%)−8.40.15.418.1−0.2−13.5−16.0
    Energy efficiencyEtoluene (g/kWh)8.89.49.69.79.49.49.3
    ECH4 (mol/kWh)4.39.613.717.36.15.03.1
    下载: 导出CSV
  • [1] KUMAR A, DEMIREL Y, JONES D D, HANNA M A. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains[J]. Bioresour Technol,2010,101(10):3696−3701. doi: 10.1016/j.biortech.2009.12.103
    [2] LEIBBRANDT N H, ABOYADE A O, KNOETZE J H, GÖRGENS J F. Process efficiency of biofuel production via gasification and Fischer–Tropsch synthesis[J]. Fuel,2013,109(7):484−492.
    [3] KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009[J]. Fuel,2010,89(8):1763−1783. doi: 10.1016/j.fuel.2010.01.027
    [4] LIU Y, ZHU L, WANG X, YIN S, LENG F, ZHANG F, LIN H, WANG S. Catalytic methanation of syngas over Ni-based catalysts with different supports[J]. Chin J Chem Eng,2017,25(5):602−608. doi: 10.1016/j.cjche.2016.10.019
    [5] 武宏香, 赵增立, 王小波, 郑安庆, 李海滨, 何方. 生物质气化制备合成天然气技术的研究进展[J]. 化工进展,2013,32(01):83−90+113.

    WU Hong-xiang, ZHAO Zeng-li, WANG Xiao-bo, ZHENG An-qing, LI Hai-bin, HE Fang. Technical development on synthetic natural gas production from biomass[J]. Chem Ind Eng Prog,2013,32(01):83−90+113.
    [6] LI C S, SUZUKI K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview[J]. Renew Sust Energ Rev,2009,13(3):594−604. doi: 10.1016/j.rser.2008.01.009
    [7] ANIS S, ZAINAL Z A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review[J]. Renew Sust Energ Rev,2011,15(5):2355−2377. doi: 10.1016/j.rser.2011.02.018
    [8] CHEN Y, LUO Y H, WU W G, SU Y. Experimental investigation on tar formation and destruction in a lab-scale two-stage reactor[J]. Energy Fuels,2009,23(9):4659−4667. doi: 10.1021/ef900623n
    [9] SHEN Y, YOSHIKAWA K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-A review[J]. Renew Sust Energ Rev,2013,21:371−392. doi: 10.1016/j.rser.2012.12.062
    [10] KIENBERGER T, ZUBER C, NOVOSEL K, BAUMHAKL C, KARL J. Desulfurization and in situ tar reduction within catalytic methanation of biogenous synthesis gas[J]. Fuel,2013,107:102−112. doi: 10.1016/j.fuel.2013.01.061
    [11] ZHANG J, WANG G, XU S. Simultaneous tar reforming and syngas methanation for bio-substitute natural gas[J]. Ind Eng Chem Res,2018,57(32):10905−10914. doi: 10.1021/acs.iecr.8b02085
    [12] TATAROVA E, BUNDALESKA N, SARRETTE J P, FERREIRA C M. Plasmas for environmental issues: from hydrogen production to 2D materials assembly[J]. Plasma Sources Sci Technol,2014,23(6):063002. doi: 10.1088/0963-0252/23/6/063002
    [13] OBRADOVIĆ B M, SRETENOVIĆ G B, KURAICA M M. A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas[J]. J Hazard Mater,2011,185(2–3):1280−1286.
    [14] CHUNG W C, PAN K L, LEE H M, CHANG M B. Dry reforming of methane with dielectric barrier discharge and ferroelectric packed-bed reactors[J]. Energy Fuels,2016,28(12):7621−7631.
    [15] TU X, WHITEHEAD J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature[J]. Appl Catal B,2012,125(Supplement C):439−448.
    [16] XU B, XIE J, ZHAN H, YIN X, WU C, LIU H. Removal of toluene as a biomass tar surrogate in a catalytic nonthermal plasma process[J]. Energy Fuels,2018,32(10):10709−10719. doi: 10.1021/acs.energyfuels.8b02444
    [17] LIU S Y, MEI D H, NAHIL M A, GADKARI S, GU S, WILLIAMS P T, TU X. Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts[J]. Fuel Process Technol,2017,166:269−275. doi: 10.1016/j.fuproc.2017.06.001
    [18] LIU L, WANG Q, AHMAD S, YANG X, JI M, SUN Y. Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system[J]. J Energy Inst,2018,91(6):927−939. doi: 10.1016/j.joei.2017.09.003
    [19] 徐彬, 谢建军, 袁洪友, 阴秀丽, 吴创之. 填充床介质阻挡放电脱除气化燃气中苯的研究[J]. 燃料化学学报,2019,47(04):493−503.

    XU Bin, XIE Jian-jun, YUAN Hong-you, YIN Xiu-li, WU Chuang-zhi. Experimental study of benzene removal in fuel gas in a packed-bed dielectric barrier discharge reactor[J]. J Fuel Chem Technol,2019,47(04):493−503.
    [20] 董新新, 金保昇, 王妍艳, 牛淼淼. Ni/γ-Al2O3甲烷化催化剂提高生物质气化燃气低位热值的实验[J]. 东南大学学报(英文版),2017,33(4):448−456.

    DONG Xin-xin, JIN Bao-sheng, WANG Yan-yan, NIU Miao-miao. Experiments on Ni/γ-Al2O3 catalyst for improving lower heating value of biomass gasification fuel gas via methanation[J]. J Southeast Univ,2017,33(4):448−456.
    [21] NEYTS E C, BOGAERTS A. Understanding plasma catalysis through modelling and simulation-a review[J]. J Phys D Appl Phys,2014,47(22):224010. doi: 10.1088/0022-3727/47/22/224010
    [22] WANG Q, YAN B H, JIN Y, CHENG Y. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: interaction of catalyst and plasma[J]. Energy Fuels,2009,23(8):4196−4201. doi: 10.1021/ef900286j
    [23] BLACKBEARD T, DEMIDYUK V, HILL S L, WHITEHEAD J C. The effect of temperature on the plasma-catalytic destruction of propane and propene: a comparison with thermal catalysis[J]. Plasma Chem Plasma P,2009,29(6):411−419. doi: 10.1007/s11090-009-9189-8
    [24] LIU L N, WANG Q, SONG J W, AHMAD S, YANG X Y, SUN Y F. Plasma-assisted catalytic reforming of toluene to hydrogen rich syngas[J]. Catal Sci Technol,2017,7(18):4216−4231. doi: 10.1039/C7CY00970D
    [25] ANG M L, OEMAR U, KATHIRASER Y, SAW E T, LEW C H K, DU Y, BORGNA A, KAWI S. High-temperature water–gas shift reaction over Ni/xK/CeO2 catalysts: Suppression of methanation via formation of bridging carbonyls[J]. J Catal,2015,329:130−143. doi: 10.1016/j.jcat.2015.04.031
    [26] LIU F D, HONG H, YUN D, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B,2009,93(1):3760−3769.
    [27] BITYURIN V A, FILIMONOVA E A, NAIDIS G V. Simulation of naphthalene conversion in biogas initiated by pulsed corona discharges[J]. IEEE Trans Plasma Sci,2009,37(6):911−919. doi: 10.1109/TPS.2009.2019756
    [28] XU B, XIE J, YIN X, LIU H, SUN C G, WU C. Mechanisms of toluene removal in relation to the main components of biosyngas in a catalytic nonthermal plasma process[J]. Energy Fuels,2019,33(5):4287−4301. doi: 10.1021/acs.energyfuels.9b00273
    [29] HUSSAIN I, JALIL A A, MAMAT C R, SIANG T J, RAHMAN A F A, AZAMI M S, ADNAN R H. New insights on the effect of the H2/CO ratio for enhancement of CO methanation over metal-free fibrous silica ZSM-5: Thermodynamic and mechanistic studies[J]. Energy Convers Manag,2019,199:112056. doi: 10.1016/j.enconman.2019.112056
    [30] ABDELAZIZ A A, SETO T, ABDEL-SALAM M, OTANI Y. Influence of nitrogen excited species on the destruction of naphthalene in nitrogen and air using surface dielectric barrier discharge[J]. J Hazard Mater,2013,246–247:26−33.
    [31] SIMELL P A, HEPOLA J O, KRAUSE A O I. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts[J]. Fuel,1997,76(12):1117−1127. doi: 10.1016/S0016-2361(97)00109-9
    [32] TAN P H, ZHANG S L, YUE K T, HUANG F M, SHI Z J, ZHOU X H, GU Z N. Comparative Raman Study of Carbon Nanotubes Prepared by D. C. Arc Discharge and Catalytic Methods[J]. J Raman Spectrosc,1997,28(5):369−372. doi: 10.1002/(SICI)1097-4555(199705)28:5<369::AID-JRS107>3.0.CO;2-X
    [33] QIAN W Z, LIU T, WEI F, YUAN H Y. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes[J]. Carbon,2003,41(9):1851−1854. doi: 10.1016/S0008-6223(03)00106-4
    [34] ZHU F S, LI X D, ZHANG H, WU A J, YAN J H, NI M J, ZHANG H W, BUEKENS A. Destruction of toluene by rotating gliding arc discharge[J]. Fuel,2016,176:78−85. doi: 10.1016/j.fuel.2016.02.065
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回