留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦粉对低阶煤热解焦油气反应行为的影响研究

李挺 杜天宙 申岩峰 闫伦靖 孔娇 王美君 王建成 常丽萍 鲍卫仁

李挺, 杜天宙, 申岩峰, 闫伦靖, 孔娇, 王美君, 王建成, 常丽萍, 鲍卫仁. 焦粉对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60056-7
引用本文: 李挺, 杜天宙, 申岩峰, 闫伦靖, 孔娇, 王美君, 王建成, 常丽萍, 鲍卫仁. 焦粉对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60056-7
LI Ting, DU Tian-zhou, SHEN Yan-feng, YAN Lun-jing, KONG Jiao, WANG Mei-jun, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60056-7
Citation: LI Ting, DU Tian-zhou, SHEN Yan-feng, YAN Lun-jing, KONG Jiao, WANG Mei-jun, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60056-7

焦粉对低阶煤热解焦油气反应行为的影响研究

doi: 10.1016/S1872-5813(21)60056-7
基金项目: 国家重点研发计划(No.2016YFB0600302),国家自然科学基金项目(22078224),山西省中央引导地方科技发展资金项目
详细信息

Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis

Funds: The project was supported by National Key Research and Development Program of China (No.2016YFB0600302), National Natural Science Foundation of China (22078224), Central Leading Local Science and Technology Development Foundation of Shanxi Provice
  • 摘要: 热解焦油气在输送管路或除尘设备中会发生一定程度的反应,进而影响热解产物的分布和组成,而其中夹带的焦粉粉尘会对焦油气反应产生影响。本文利用两段流化床热解反应器,考察了不同反应温度下(400-500 ℃),焦粉对淖毛湖长焰煤热解焦油气反应的影响。结果表明,添加焦粉后,焦油气不仅发生热裂解和热缩聚反应,还会被焦粉作用发生催化裂解反应,焦油产率和沥青含量减小,热解气和积炭产率增加;随着反应温度的升高,焦油气热裂解和热缩聚反应加剧,反应后焦油气较为稳定,不易被焦粉催化,因此焦粉对焦油产率、沥青含量及热解气产率的影响随温度升高逐渐减弱;而反应温度升高,焦油气催化裂解生成的自由基更容易发生缩聚反应,焦粉对积炭产率的影响变强。此外,焦粉的催化裂解作用使不同反应温度下焦油中杂环化合物含量下降;同时焦粉促进了热解水与焦油气反应,导致不同反应温度下焦油中脂肪烃、芳香烃含量下降,酚类和含氧化合物含量上升。
  • 图  1  实验装置示意图

    Figure  1.  Diagram of experimental equipment

    1:Nitrogen cylinder; 2: Mass flow controller; 3: Gas preheater; 4: Feeder; 5: Fluidized bed reactor; 6: Electric furnace; 7: Collection bottle; 8: Filter; 9: Gas analyzer

    图  2  焦粉的红外光谱 (a)和拉曼光谱 (b) 图

    Figure  2.  FTIR (a) and Raman (b) spectra of char powder

    图  3  不同反应温度下焦粉对热解产物产率的影响

    Figure  3.  Effect of char powder on yields of pyrolysis products at different reaction temperatures

    图  4  不同反应温度下焦粉对热解焦油馏分分布的影响

    Figure  4.  Effect of char powder on the distribution of tar fraction at different reaction temperatures

    图  5  不同反应温度下焦粉对热解焦油组成的影响

    Figure  5.  Effect of char powder on tar composition at different reaction temperatures

    表  1  煤样的工业分析和元素分析

    Table  1.   Proximate and ultimate analyses of coal sample

    Proximate analysis (wt.%)Ultimate analysis (wt.%, daf)
    MadAdVdaf CHNSO*
    19.55.850.1274.355.130.720.3119.49
    Note: ad: air-dried basis; d: dry basis; daf: dry and ash-free basis; *: difference
    下载: 导出CSV

    表  2  焦粉的工业分析和元素分析

    Table  2.   Proximate and ultimate analyses of char powder

    Proximate analysis (wt.%)Ultimate analysis (wt.%, daf)
    AdVdafFCdaf CHNSO*
    9.3526.6973.3182.693.980.830.4212.08
    Note: dry basis; daf: dry and ash-free basis; *: difference
    下载: 导出CSV

    表  3  焦粉的灰成分分析

    Table  3.   Ash composition of char powder (wt.%)

    SiO2Al2O3Fe2O3CaOMgOTiO2SO3K2ONa2OP2O5
    13.689.8314.3743.641.520.242.670.141.260.01
    下载: 导出CSV
  • [1] 赵宁, 刘东, 郭中山, 周家顺, 龚鑫, 于冉, 王峰. 低阶烟煤热解过程中氯的迁移释放特性研究[J]. 燃料化学学报,2019,47(9):1032−1041. doi: 10.3969/j.issn.0253-2409.2019.09.002

    ZHAO Ning, LIU Dong, GUO Zhong-shan, ZHOU Jia-shun, GONG Xin, YU Ran, WANG Feng. Investigation on transferring and release characteristics of chlorine during pyrolysis of low rank coal[J]. J Fuel Chem Technol,2019,47(9):1032−1041. doi: 10.3969/j.issn.0253-2409.2019.09.002
    [2] 潘生杰, 陈建玉, 范飞, 李鹏飞. 低阶煤分质利用转化路线的现状分析及展望[J]. 洁净煤技术,2017,23(5):7−12.

    PAN Sheng-jie, CHEN Jian-yu, FAN Fei, LI Peng-fei. Present situation analysis and prospect of low rank coal quality-based utilization conversion route[J]. Clean Coal Technol,2017,23(5):7−12.
    [3] 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报,2017,68(10):3693−3707.

    CHEN Zhao-hui, GAO Shi-qiu, XU Guang-wen. Analysis and control methods of coal pyrolysis process[J]. J Chem Ind Eng,2017,68(10):3693−3707.
    [4] 刘书贤, 门卓武, 郭屹, 陈爱国, 王向辉, 陈微, 翁力. 块煤热解提质工艺及反应器开发进展[J]. 洁净煤技术,2015,21(4):70−76.

    LIU Shu-xian, MEN Zhuo-wu, GUO Yi, CHEN Ai-guo, WANG Xiang-hui, CHEN Wei, WENG Li. Status and development of lump coal pyrolysis and reactor design technologies[J]. Clean coal Technol,2015,21(4):70−76.
    [5] 杜鑫, 黄茂丽, 齐彬彬, 李云. 粉煤热解含尘干馏气两级净化实验研究[J]. 煤炭学报,2018,43(10):255−261.

    DU Xin, HUANG Mao-li, QI Bin-bin, LI Yun. Experimental study on the two-stage purification of retorting gas in the process of pulverized coal pyrolysis[J]. J China Coal Soc,2018,43(10):255−261.
    [6] CHEN Q L, FANG M X, CEN J M, LU M L, SHAO S T, XIA Z X. Comparison of positive and negative DC discharge under coal pyrolysis gas media at high temperatures[J]. Powder Technol,2019,345:352−362. doi: 10.1016/j.powtec.2019.01.004
    [7] 陈昭睿, 王勤辉, 郭志航, 贾鑫, 方梦祥, 骆仲泱. 热解气停留时间对典型烟煤热解产物的影响[J]. 热能动力工程,2015,30(5):756−761.

    CHEN Zhao-rui, WANG Qin-hui, GUO Zhi-hang, JIA Xin, FANG Meng-xiang, LUO Zhong-yang. Influence of the residence time of gases pyrolyzed on the pyrolytic products of typical bituminous coal[J]. J Eng Therm Energy Power,2015,30(5):756−761.
    [8] XU W C, AKIRA T. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis[J]. Fuel Process Technol,1989,21(1):25−37. doi: 10.1016/0378-3820(89)90012-X
    [9] ZHOU Q Q, LIU Q Y, SHI L, YAN Y X, WU J F, XIANG C, WANG T, LIU Z Y. Effect of volatiles’ reaction on composition of tars derived from pyrolysis of a lignite and a bituminous coal[J]. Fuel,2019,242:140−148. doi: 10.1016/j.fuel.2019.01.005
    [10] 敦启孟, 陈兆辉, 皇甫林, 周杨, 余剑, 高士秋, 刘鸿雁. 温度和停留时间对煤热解挥发分二次反应的影响[J]. 过程工程学报,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192

    DUN Qi-meng, CHEN Zhao-hui, HUANG Fu-lin, ZHOU Yang, YU Jian, GAO Shi-qiu, LIU Hong-yan. Influences of temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. Chin J Process Eng,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192
    [11] 刘殊远, 汪印, 武荣成, 曾玺, 许光文. 热态半焦和冷态半焦催化裂解煤焦油研究[J]. 燃料化学学报, 2013, 41(9): 1041-1049.

    LIU Shu-yuan, WANG Yin, WU Rong-chen, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in situ chars[J]. 2013, 41(9): 1041-1049.
    [12] JIN L J, BAI X Y, LI Y, DONG C, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46. doi: 10.1016/j.fuproc.2015.12.028
    [13] 韩江则, 刘少杰, 申淑锋. 半焦催化裂解原位煤热解焦油的研究[J]. 现代化工,2017,37(2):62−65.

    HAN Jiang-ze, LIU Shao-jie, SHEN Shu-feng. Catalytic cracking of in situ coal pyrolysis tar over char catalyst[J]. Mod Chem Ind,2017,37(2):62−65.
    [14] 王兴栋, 韩江则, 陆江银, 陆江银, 高士秋, 许光文. 半焦基催化剂裂解煤热解产物 提高油气品质[J]. 化工学报,2013,63(12):3897−3905.

    WANG Xing-don, HAN Jiang-ze, LU Jiang-yin, GAO Shi qiu, XU Guan-gwen. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalysts[J]. J Chem Ind Eng,2013,63(12):3897−3905.
    [15] FU D Q, LI X H, LI W Y, FENG J. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Process Technol,2018,176:240−248. doi: 10.1016/j.fuproc.2018.04.001
    [16] 尤占平, 由世俊, 李宪莉, 焦永刚, 韩鹏. 生物质炭催化裂解焦油的性能研究[J]. 可再生能源,2011,29:39−42. doi: 10.3969/j.issn.1671-5292.2011.06.009

    YOU Zhan-ping, YOU Shi-jun, LI Xie-li, JIAO Yong-gang, HAN Peng. Study on biomass char on catalytic pyrolysis performance of tar[J]. Renew Energy,2011,29:39−42. doi: 10.3969/j.issn.1671-5292.2011.06.009
    [17] ZHANG S, CHEN Z D, ZHANG H Y, WANG Y G, XU X Q, CHENG L, ZHANG Y M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: effects of parental carbon materials on the performance of char catalysts[J]. Fuel Process Technol,2018,174:142−148. doi: 10.1016/j.fuproc.2018.02.022
    [18] HAN J Z, WANG X D, YUE J R, XI B F, GAO S Q, XU G W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process Technol,2014,122:4934−4941.
    [19] XU W C, TOMITA A. Effect of metal oxides on the secondary reactions of volatiles from coal[J]. Fuel,1989,68(5):673−676. doi: 10.1016/0016-2361(89)90173-7
    [20] FURUTANI Y, KUDO S, HAYASHI J I, NORINAGA K. Predicting molecular composition of primary product derived from fast pyrolysis of lignin with semi-detailed kinetic model[J]. Fuel,2018,212:515−522. doi: 10.1016/j.fuel.2017.10.079
    [21] Pütün A E, Apaydın E, Petén E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy,2004,29(12-15):2171−2180. doi: 10.1016/j.energy.2004.03.020
    [22] 郭林丹. 水蒸气对煤与生物质共热解的影响[D]. 大连: 大连理工大学, 2013.

    GUO Lin-dan. Influence of steam on co-pyrolysis of coal and biomass[D]. Dalian: Dalian University of Technology, 2013.
    [23] WU J F, LIU QY, WANG R X, HE W J, SHI L, GUO X J, CHEN Z Z, JI L M. Coke formation during during thermal reaction of tar from pyrolysis of a subbituminous coal[J]. Fuel Process Technol,2017,155:68−73. doi: 10.1016/j.fuproc.2016.03.022
    [24] ZHANG S, CHEN Z D, ZHANG H Y, WANG Y G, XU X Q, CHENG L, ZHANG Y M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts[J]. Fuel Process Technol,2018,174:142−148. doi: 10.1016/j.fuproc.2018.02.022
    [25] DONG L, HANS, YU W H, LEI Z P, KANG S G, ZHANG K, YANG J C, LI Z K, SHUI H F, WANG Z C, REN S B, PAN C X. Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal[J]. J. Anal Appl Pyrolysis,2019,140:321−330. doi: 10.1016/j.jaap.2019.04.009
    [26] FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical south african inertinite-rich coal[J]. Fuel,2014,134:90−96. doi: 10.1016/j.fuel.2014.05.032
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-08

目录

    /

    返回文章
    返回