留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同结晶度的WO3负载Pt低温催化萘加氢合成十氢萘

赵彤 赵斌彬 牛玉峰 梁瑜 刘雷 董晋湘 唐明兴 李学宽

赵彤, 赵斌彬, 牛玉峰, 梁瑜, 刘雷, 董晋湘, 唐明兴, 李学宽. 不同结晶度的WO3负载Pt低温催化萘加氢合成十氢萘[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60069-5
引用本文: 赵彤, 赵斌彬, 牛玉峰, 梁瑜, 刘雷, 董晋湘, 唐明兴, 李学宽. 不同结晶度的WO3负载Pt低温催化萘加氢合成十氢萘[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60069-5
ZHAO Tong, ZHAO Bin-bin, NIU Yu-feng, LIANG Yu, LIU Lei, DONG Jin-xiang, TANG Ming-xing, LI Xue-kuan. Hydrogenation of naphthalene to decalin catalyzed by WO3 supported Pt with different crystallinity at low temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60069-5
Citation: ZHAO Tong, ZHAO Bin-bin, NIU Yu-feng, LIANG Yu, LIU Lei, DONG Jin-xiang, TANG Ming-xing, LI Xue-kuan. Hydrogenation of naphthalene to decalin catalyzed by WO3 supported Pt with different crystallinity at low temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60069-5

不同结晶度的WO3负载Pt低温催化萘加氢合成十氢萘

doi: 10.1016/S1872-5813(21)60069-5
基金项目: 国家自然科学基金项目(U1910202,21978194);山西省自然科学基金项目(201801D121055);山西省青年三晋学者支持计划
详细信息
    作者简介:

    赵彤(1992—),男,硕士研究生,635378098@qq.com

    通讯作者:

    刘雷(1978—),男,博士,教授,liulei@tyut.edu.cn

  • 中图分类号: TQ 028.8

Hydrogenation of naphthalene to decalin catalyzed by WO3 supported Pt with different crystallinity at low temperature

Funds: The project was supported by the National Natural Science Foundation of China (U1910202, 21978194), the Natural Science Foundation of Shanxi Province (201801D121055), and Program for the Shanxi Young Sanjin Scholar
  • 摘要: 不同温度下直接煅烧偏钨酸铵制备了晶化程度不同的两种氧化钨(WO3-500和WO3-900),通过XRD、SEM、TEM、XPS、H2-TPR和NH3-TPD手段对WO3载体负载Pt前后的物化性质进行了系统的表征,低温反应条件下研究了不同氧化钨负载Pt对萘加氢的催化性能。和WO3-900载体相比,低温煅烧得到 具有较低的结晶程度,载体中大量的W5+物种和负载的Pt具有强的相互作用,并显示出较强的酸性。在低的反应温度下(70 ℃),Pt/WO3-500催化剂对萘加氢合成十氢萘具有优异的催化性能,萘的转化率和十氢萘的选择性均达到100%;在Pt/WO3-900催化下萘的转化率和十氢萘的选择性仅为26.7%和1.7%。结合催化剂的表征和催化反应结果,揭示了氧化钨中的氧缺陷位是提升Pt/WO3催化性能的关键因素,对设计高效的WO3负载 Pt催化剂催化萘合成十氢萘提供了一定的理论指导。
  • 图  1  不同WO3负载Pt前后的粉末XRD谱图

    Figure  1.  Powder XRD patterns of the various WO3 samples before and after loading Pt

    图  2  WO3-500 (a, b)和WO3-900 (c, d)样品的SEM照片

    Figure  2.  SEM images of WO3-500 (a, b) and WO3-900 (c, d) samples

    图  3  Pt/WO3-500 (a,b)和Pt/WO3-900 (c,d))催化剂的TEM照片

    Figure  3.  TEM images of Pt/WO3-500 (a, b) and Pt/WO3-900 (c, d) catalysts

    图  4  样品的W 4f XPS谱图:WO3-500(a)、Pt/WO3-500 (b)、WO3-900(c)和Pt/WO3-900(d)

    Figure  4.  XPS spectra for the W 4f of WO3-500 (a),Pt/WO3-500(b),WO3-900(c)and Pt/WO3-900(d)

    图  5  Pt 4f XPS谱图:Pt/WO3-500 (a)和Pt/WO3-900(b)催化剂

    Figure  5.  XPS spectra for the Pt 4f of Pt/WO3-500 (a) and Pt/WO3-900(b)catalysts

    图  6  Pt/WO3-500和Pt/WO3-900样品的H2-TPR曲线

    Figure  6.  H2-TPR profiles of Pt/WO3-500 and Pt/WO3-900 samples

    图  7  不同WO3负载Pt前后的NH3-TPD谱图

    Figure  7.  NH3–TPD profiles of WO3 samples before and after loading platinum

    图  8  Pt/WO3-500和Pt/WO3-900催化剂上萘加氢反应结果

    Figure  8.  Catalytic results of naphthalene hydrogenation over Pt/WO3-500 with various Pt loading (Reaction conditions: 5 mL of 0.05 M naphthalene solution, 0.02 g of catalyst, 3 MPa H2, 500 rpm, 70 ℃, 1 h)

    图  9  不同Pt负载量的Pt/WO3-500催化剂萘加氢反应结果

    Figure  9.  The catalytic results for hydrogenation of naphthalene over Pt/WO3 -500 with various Pt loading (Reaction conditions: 5 mL of 0.05 M naphthalene solution, 0.02 g of catalyst, 3 MPa H2, 500 rpm, 70 ℃, 1 h)

    图  10  不同反应温度下1%Pt/WO3-500催化剂催化萘加氢的反应结果

    Figure  10.  Catalytic results for naphthalene hydrogenation over Pt/WO3-500 at various reaction temperature (Reaction conditions: 5 mL of 0.05 M naphthalene solution, 0.02 g of catalyst, 3 MPa H2, 500 rpm, 1 h)

    表  1  Pt/WO3-500和Pt/WO3-900两种催化剂中Pt和W物种的XPS催化剂的XPS拟合结果

    Table  1.   XPS fitting results of Pt and W species in the two catalysts

    Catalyst4f 7/2 BE (eV)Pt0/(Pt0+Pt2+)Pt2+/(Pt0+Pt2+)W5+/(W5++W6+)
    Pt0Pt2+W5+W6+
    Pt/WO3-90071.3272.4834.7535.760.830.170.05
    Pt/WO3-50071.3472.534.7335.770.750.250.21
    下载: 导出CSV
  • [1] AZP ROZ G, BLANCO C G, BANCIELLA C. The use of solvents for purifying industrial naphthalene from coal tar distilled oils[J]. Fuel Process. Technol,2008,89(2):111−117. doi: 10.1016/j.fuproc.2007.06.001
    [2] 杨惠斌. 菲加氢反应体系的研究[D]; 华东理工大学, 2015.

    YANG Hui-bin. Study on hydrogenation system of phenanthrene[D]; East China university of science and technology, 2015.
    [3] 谭凤宜. 固定床法萘催化加氢合成十氢萘工艺研究[D]; 南京工业大学, 2006.

    TAN Feng-yi. Study on hydrogenation of naphthalene to decalin in a fixed bed reactor[D];Nanjing University of Technology, 2006.
    [4] PANG M, LIU C, XIA W, MUHLER M, LIANG C. Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin[J]. Green Chem,2012,14(5):1272−1276. doi: 10.1039/c2gc35177c
    [5] SHIRAI M, RODE C V, MINE E, Sasaki A, SATO O, HIYOSHI N. Ring hydrogenation of naphthalene and 1-naphthol over supported metal catalysts in supercritical carbon dioxide solvent[J]. Catal Today,2006,115(1-4):248−253. doi: 10.1016/j.cattod.2006.02.048
    [6] ESCOBAR J, BARRERA MC, SANTES V, TERRAZAS J E. Naphthalene hydrogenation over Mg-doped Pt/Al2O3 [J]. Catal Today,2017,296:197−204. doi: 10.1016/j.cattod.2017.04.064
    [7] 杨平, 辛靖, 李明丰, 聂红. 四氢萘加氢转化研究进展[J]. 石油炼制与化工,2011,42(8):1−6.

    YANG Ping, XIN Jing, LI Ming-feng, NIE Hong. Research advances in the hydrogenation of tetralin[J]. Pet Procrss Petroche,2011,42(8):1−6.
    [8] 郄志强, 张子毅, 荆洁颖, 杨志奋, 冯杰, 李文英. Ni2P负载量对Ni2P/Ce-Al2O3催化剂结构及萘加氢性能的影响[J]. 燃料化学学报,2019,47(6):718−724.

    QI Zhi-qiang, ZHANG Zi-ying, JING Jie-ying, YANG Zhi-fen, FENG Jie, LI Wen-ying. Effect of Ni2P loading on the structure and naphthalene hydrogenation performance of Ni2P/Ce-Al2O3 catalyst[J]. J Fuel Chem Technol,2019,47(6):718−724.
    [9] 米星, 何广湘, 郭晓燕, 杨索和, 罗国华, 徐新, 靳海波. Ni/γ-Al2O3催化剂上萘加氢生成十氢萘的催化反应研究[J]. 燃料化学学报,2018,46(7):879−885.

    MI Xing, HE Guang-xiang, GUO Xiao-yan, YANG Suo-he, LUO Guo-hua, XU Xin, JIN Hai-bo. Effect of reaction conditions on the hydrogenation of naphthalene to decalin over Ni/Al2O3 catalyst[J]. J Fuel Chem Technol,2018,46(7):879−885.
    [10] 佟瑞利, 王永刚, 张旭, 张海永, 戴谨泽, 林雄超, 许德平. P改性NiW/γ-Al2O3的低温焦油芳烃组分加氢性能研究[J]. 燃料化学学报,2015,43(12):1461−1469. doi: 10.1016/S1872-5813(16)30003-2

    TONG Rui-li, WANG Yong-gang, ZHANG Xu, ZHANG Hai-yong, DAI Jin-ze, LIN Xiong-chao, XU De-ping. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol,2015,43(12):1461−1469. doi: 10.1016/S1872-5813(16)30003-2
    [11] CHEN H, YANG H, OMOTOSO O, DING L, BRIKER Y, YING Z, RING Z. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts[J]. Appl Catal A,2009,358(2):103−109. doi: 10.1016/j.apcata.2008.12.045
    [12] ALBERTAZZI S, GANZERLA R, GOBBI C, LENARDA M, VACCARI A. Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates[J]. J J Mol Catal. A: Chem,2003,200(1-2):261−270. doi: 10.1016/S1381-1169(03)00025-6
    [13] LU C M, LIN Y M, WANG I. Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-Support interaction (SMSI)[J]. Appl Catal A,2000,198(s1–2):223−234.
    [14] LIN S D, SONG C. Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene[J]. Catal Today,1996,31(1):93−104.
    [15] 张小菲, 邵正锋, 毛国强, 何德民, 张秋民, 梁长海. 萘在贵金属Pd、Pt及Pd-Pt催化剂上的加氢活性及耐硫性能[J]. 物理化学学报,2010,26(10):2691−2698. doi: 10.3866/PKU.WHXB20101006

    Zhang Xiao-fei, Shao Zheng-feng, Mao Guo-qiang, He De-min, Zhang Qiu-min, Liang Chang-hai. Naphthalene Hydrogenation Activity over Pd, Pt and Pd-Pt Catalysts and Their Sulfur Tolerance[J]. ACTA PHYS-CHIM SIN,2010,26(10):2691−2698. doi: 10.3866/PKU.WHXB20101006
    [16] 李剑, 武海顺, 杨丽娜, 杨肖嵘, 马波. 超声辅助浸渍法制备高分散Pt/CMK-3-US加氢脱萘催化剂[J]. 无机化学学报,2017,33(4):583−588.

    LI Jian, WU Hai-shun, YANG Li-na, YANG Xiao-rong, MA Bo. Ultrasound assisted synthesis of highly dispersed Pt/CMK-3-US as catalyst for hydrogenation of naphthalene[J]. Chinese J Inorg Chem,2017,33(4):583−588.
    [17] HUANG T C, KANG B C. The Hydrogenation of naphthalene with platinum/alumina-aluminum phosphate catalysts[J]. Ind Eng Chem Res,1995,34(9):2955−2963. doi: 10.1021/ie00048a005
    [18] REDDY K M, SONG C. Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons[J]. Catal Today,1996,31(1/2):137−144.
    [19] LIU J, ZHANG H, LU N, YAN X, LI R. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Ind Eng Chem Res,2020,59(3):1056−1064. doi: 10.1021/acs.iecr.9b04411
    [20] 周妍, 张然, 王东生, 杨斌. 水热法制备Mo掺杂WO3纳米材料及其光致变色性质的研究[J]. 材料工程,2012,10(83):73−79+83.

    ZHOU Yan, ZHANG Ran, WANG Dong-sheng, YANG Bin. Hydrothermal synthesis and photochromic characterization of Mo doped WO3 nanomaterial[J]. J Mater Eng,2012,10(83):73−79+83.
    [21] 于卓斌, 赵强, 袁雯, 李晋平. 原位电解制备WO3/Ni-Bi析氧催化剂[J]. 太阳能学报,2014,35(10):1883−1888.

    YU Zhuo-bin, ZHAO Qiang, YUAN Wen, LI Jin-ping. Preparation of WO3/Ni-Bi oxygen-evolution catalyst by situ electrolysis[J]. Acta Energi Sin,2014,35(10):1883−1888.
    [22] 孙启梅, 花亮, 陈雨, 金江, 陈榕, 张华. 质子交换膜燃料电池阴极催化剂用WO3的制备与性能[J]. 南京工业大学学报(自然科学版),2008,30(6):10−13.

    SUN Qi-mei, HUA Liang, CHEN Yu, JIN Jiang, CHEN Rong, ZHANG Hua. Preparation and properties of WO3 as electrocatalyst for proton exchange membrane fuel cell cathode[J]. J Nanjing U Techno: (Nat Sci Ed),2008,30(6):10−13.
    [23] WANG J, ZHAO X C, LEI N, LI L, ZHANG L L, XU S T, MIAO S, PAN X L, WANG A Q, ZHANG T. Hydrogenolysis of glycerol to 1, 3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst[J]. ChemSusChem,2016,9(8):784−790. doi: 10.1002/cssc.201501506
    [24] ZHENG H, JIAN Z O, STRANO M S, KANER RB, MITCHELL A, KALANTAR-ZADEH K. Nanostructured tungsten oxide-properties, synthesis, and applications[J]. Adv Funct Mater,2011,21(12):2175−2196. doi: 10.1002/adfm.201002477
    [25] 杨欢, 王桂赟, 田伟松, 童春杰. 单斜相WO3的水热合成及其光催化性能的研究[J]. 燃料化学学报,2018,46(11):1359−1369.

    YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. J Fuel Chem Technol,2018,46(11):1359−1369.
    [26] TU J G, LEI H P, YU Z J, JIAO S Q. Ordered WO3-x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries[J]. Chem Commun,2018,54(11):1343−1346. doi: 10.1039/C7CC09376D
    [27] KARIM W, SPREAFICO C, KLEIBERT A, GOBRECHT J, VANDE V J, EKINCI Y, JEROEN A, BOKHOVEN V, CLELIA, KARIM. Catalyst support effects on hydrogen spillover[J]. Nature,2017,541(7635):68−71. doi: 10.1038/nature20782
    [28] GARCIA F S, GANDARIAS I, REQUIES J, GUEMEZ M B, BENNICI S, AUROUX A, ARIAS P L. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1, 3-propanediol[J]. J Catal,2015,323:65−75. doi: 10.1016/j.jcat.2014.12.028
    [29] NIU Y F, ZHAO B B, LIANG Y, LIU L, DONG J X. Promoting role of oxygen deficiency on WO3 supported Pt catalyst for glycerol hydrogenolysis to 1, 3-propanediol[J]. Ind Eng Chem Res,2020,59(16):7389−7397. doi: 10.1021/acs.iecr.9b07067
    [30] ZHU S, GAO X, ZHU Y, CUI J, ZHENG H, LI Y. SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1, 3-propanediol[J]. Appl Catal B,2014,158-159:391−399. doi: 10.1016/j.apcatb.2014.04.049
    [31] TIAN H, CUI X Z, ZENG L M, SU L, SONG Y L, SHI J L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst[J]. J Mater Chem A,2019,7(11):6285−6293. doi: 10.1039/C8TA12219A
    [32] SONG J J, HUANG Z F, PAN L, ZOU J J, ZHANG X W, WANG L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst[J]. ACS Catal,2015,5(11):6594−6599. doi: 10.1021/acscatal.5b01522
    [33] FAN Y, CHENG S J, WANG H, YE D H, XIE S H, PEI Y, HU H R, HUA W M, LI Z H, QIAO M H, ZONG B N. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1, 3-propanediol[J]. Green Chem,2017,19(9):2174−2183. doi: 10.1039/C7GC00317J
    [34] GARC A-FERN NDEZ S, GANDARIAS I, REQUIES J, SOULIMANI F. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1, 3-propanediol over Pt/WOx/Al2O3[J]. Appl Catal B,2017,204:260−272. doi: 10.1016/j.apcatb.2016.11.016
    [35] ZHOU W, LUO J, WANG Y, LIU J F. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2[J]. Appl Catal B,2019,242:410−421. doi: 10.1016/j.apcatb.2018.10.006
    [36] DONG L, Zhou Z W, Qin J, YANG L. Cu-WOx-TiO2 catalysts by modified evaporation-induced self-assembly method for glycerol hydrogenolysis to 1, 3-propanediol[J]. Chemistry Select,2018,3(9):2479−2486.
    [37] YUE C C, ZHU X C, RIGUtTTO M. Acid catalytic properties of reduced tungsten and niobium-tungsten oxides[J]. Appl Catal B,2015,163:370−381. doi: 10.1016/j.apcatb.2014.08.008
    [38] FENG S H, ZHAO B B, LIU L, DONG J X. Platinum supported on WO3-doped aluminosilicate: a highly efficient catalyst for selective hydrogenolysis of glycerol to 1, 3-propanediol[J]. Ind Eng Chem Res,2017,56(39):11065−11074. doi: 10.1021/acs.iecr.7b02951
    [39] PARK K C, YIM D J, IHM S K. Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation[J]. Catal Today,2002,74(3):281−290.
    [40] BOUCHY M, DUFRESNE P, KASZTELAN S. Hydrogenation and hydrocracking of a model light cycle oil feed. 1. Properties of a sulfided nickel-molybdenum hydrotreating catalyst[J]. Ind Eng Chem Res,1992,32(12):553−574.
    [41] WANG M L, QIAN X Q, XIE L Q, FENG H H, YE L M, DUAN X P, YUAN Y Z. Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chem Eng,2019,7(2):1989−1997. doi: 10.1021/acssuschemeng.8b04256
    [42] CORMA A, MARTINEZ A, MARTINEZ-SORIAY V. Hydrogenation of aromatics in diesel fuels on Pb/MCM-4l catalysts[J]. J Catal,1997,169(2):480−489. doi: 10.1006/jcat.1997.1737
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-29

目录

    /

    返回文章
    返回