留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能

邹爱华 徐晓梅 周浪 林路贺 康志兵

邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60085-3
引用本文: 邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60085-3
ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60085-3
Citation: ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60085-3

石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能

doi: 10.1016/S1872-5813(21)60085-3
基金项目: 江西省博后择优项目 (2017KY45) 、江西省重点研发计划项目(20192BBE50001)和博士启动金 (EA201801216)
详细信息
    通讯作者:

    E-mail: aihua553030@163.com

  • 中图分类号: O643.36

Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane

Funds: The project was supported by Doctoral Program of Jiangxi Province (2017KY45) , Provincial Key Research and Invention Program(20192BBE50001) and PhD Research Startup Foundation (EA201801216)
  • 摘要: 高效、低成本催化剂是实现以氨硼烷(NH3BH3, AB)为化学储氢材料水解产氢的关键。本文采用简单的浸渍还原法,制备了石墨烯负载的Co-CeOx 纳米复合物(Co-CeOx /graphene)催化剂,对其氨硼烷水解产氢的催化性能进行了研究。结果表明,Co与CeOx 之间存在强的协同电子效应,同时高分散的纳米Co-CeOx 粒子与石墨烯之间存在强的金属--载体相互作用,因而所制备的Co-CeOx /graphene催化剂对氨硼烷水解具有良好的催化活性和循环稳定性。Co-CeOx /graphene催化剂上氨硼烷水解的活化能( Ea )为39.5 kJ/mol,反应转化频率(TOF)为45.1 min−1,分别为纯Co及Co/graphene催化剂上的12倍与9倍之多,高于大多数已报道的非贵金属催化剂。
  • 图  1  (a):graphene; (b):Co/graphene, (c)−(d):Co-CeOx/graphene催化剂的TEM照片

    Figure  1  TEM images of (a): graphene; (b): Co/graphene; (c)−(d): Co-CeOx/graphene

    图  2  Co-CeOx/graphene催化剂的EDX谱图

    Figure  2  EDS spectrum of the Co-CeOx /graphene catalyst

    图  3  (a) Co/graphene, (b)Co-CeOx/graphene, (c)Co-CeOx/graphene样品在氮气保护下500 °C煅烧 4 h 的XRD谱图

    Figure  3  XRD patterns of (a) Co /graphene, (b) Co-CeOx/graphene and (c) Co-CeOx/graphene annealed at 500 °C for 4 h under N2 in tube furnace

    图  4  (a) Co-CeOx/graphene的XPS谱图; (b) CeOx/graphene的XPS谱图; 相对应的精细谱图 (c) Co 2p, (d) Ce 3d

    Figure  4  Survey XPS spectra of Co-CeOx/graphene (a) and CeOx/graphene (b); Co 2p XPS spectra (c) and Ce 3d XPS spectra (d) of the as-synthesized catalysts

    图  5  298 K下催化AB水溶液(200 mmol/L, 5 mL)放氢的生产率与反应时间的关系(Co/AB = 0.05)

    Figure  5  Hydrogen productivity vs. reaction time for hydrolysis of aqueous ammonia borane (200 mmol/L, 5 mL) catalyzed by the different catalysts at 298 K(Co/AB = 0.05)

    图  6  Co-CeOx/graphene催化剂在298 K下催化氢硼烷水溶液(200 mmol/L, 5 mL)释放氢的生产率与反应时间的关系(Co/AB = 0.05, Ce = 45%);插图显示了Co-CeOx/graphene在不同的Ce含量下催化AB水解脱氢的反应时间

    Figure  6  Hydrogen productivity vs. reaction time forhydrolysis of aqueous ammonia borane(200 mmol/L, 5 mL) catalyzed by the Co-CeOx/graphene catalyst at 298 K (Co/AB = 0.05, Ce = 45%); The inset shows the reaction time for the hydrolytic dehydrogenation of AB catalyzed by Co-CeOx/graphene with different molar contents of CeOx

    图  7  不同稀土元素的Co-ReOx/graphene催化剂催化氢硼烷水溶液(200 mmol/L, 5 mL)释放氢的生产率与反应时间的关系(Co/AB = 0.05, Re = Ce、La、Tb、Er、Dy and Yb,45% of Re)

    Figure  7  Hydrogen generation from the hydrolysis of ammonia borane (200 mmol/L, 5 mL) catalyzed by Co-ReOx /graphene (Re = Ce, La, Tb, Er, Dy and Yb, 45% of Re) under ambient atmosphere at room temperature (Co/AB = 0.05)

    图  8  不同石墨烯含量的Co-CeOx/graphene催化剂在298 K下催化氢硼烷水溶液(200 mmol/L,5 mL)释放氢的生产率与反应时间的关系(Co/AB = 0.05)

    Figure  8  Hydrogen productivity vs. reaction time for the hydrolysis of aqueous ammonia borane (200 mmol/L, 5 mL) catalyzed by Co-CeO x /graphene with different amounts of graphene at 298 K amounts of graphene at 298 K

    图  9  (a) Co-CeOx/graphene, (c) Co/graphene, (e) Co催化剂在298−313 K下催化氨硼烷溶液(5 mmol/L, 5 mL)放氢量与时间的关系(Co/AB = 0.05, Ce = 45%);(b), (d), (f)分别为(a), (c), (e)对应的阿伦尼乌斯曲线图

    Figure  9  Evolution plots of hydrogen generated vs. time for the hydrolysis of ammonia borane (200 mmol/L, 5 mL, Co/AB=0.05) catalyzed by Co-CeOx /graphene (Ce = 45%) (a), Co/graphene (b) and Co (c) at different temperatures (298–313 K); Graphs (b) (d) and (f) are the Arrhenius plots obtained from the Graphs (a), (c) and (e), respectively

    图  10  Co-CeOx/graphene催化剂催化氨硼烷水解脱氢循环使用性能图

    Figure  10  Stability characterization of Co-CeOx/graphene in fives run for hydrolytic dehydrogen of ammonia borane

    表  1  室温下水溶液中AB水解制氢各种非贵金属催化剂的催化活性

    Table  1  Catalytic performances of various non-noble metal catalysts for hydrogen generation from the hydrolysis of aqueous AB at room temperature

    CatalystTOF/
    $({{\bf{mo} }{ {\bf{l} }_{ { {\rm{H} }_{_2} } } }\cdot{\bf{mol} }_{ {\bf{metal} } }^{\bf{ - 1}}\cdot{\bf{mi} }{ {\bf{n} }^{\bf{ - 1}} }} )$
    Ea/
    (kJ·mol−1)
    Ref.
    Co/MIL-101-1-U51.431.3[34]
    CoNi/RGO19.539.9[22]
    Ag@CoNi/graphene99.336.15[35]
    Co-(CeOx)0.91/NGH79.531.82[36]
    Co/graphene13.8032.75[37]
    Ag@Co/graphene102.420.03[38]
    Ag@Ni /graphene7749.56[38]
    Cu@CoNi/graphene15.4658.41[39]
    Co0.75B0.257.2440.85[40]
    Co0/CeO27.043[33]
    Ni-CeOx/graphene68.228.9[41]
    Co/γ-Al2O32.362[42]
    Co-CeOx/graphene45.139.5this work
    Co/graphene4.7558.0this work
    Co3.6870.3this work
    下载: 导出CSV
  • [1] 肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩. LaNiO3的焙烧温度对甲醇水蒸气重整制CuO/LaNiO3催化剂的影响[J]. 燃料化学学报,2020,48(2):213−220. doi: 10.3969/j.issn.0253-2409.2020.02.011

    XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming[J]. J Fuel Chem Technol,2020,48(2):213−220. doi: 10.3969/j.issn.0253-2409.2020.02.011
    [2] ZHANG J, DONG Y N, LIU Q X, ZHOU M, MI G, DU X G. Hierarchically alloyed Pd-Cu microarchitecture with tunable shapes: Morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane[J]. Int J Hydrog Energy,2019,44(57):30226−30236. doi: 10.1016/j.ijhydene.2019.09.213
    [3] 卢培静, 蔡夫锋, 张军, 刘予宇, 孙予罕. B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2019,47(7):791−798. doi: 10.3969/j.issn.0253-2409.2019.07.003

    LU Pei-jing, CAI Fu-feng, ZHANG Jun, LIU Yu-yu, SUN Yu-han. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. J Fuel Chem Technol,2019,47(7):791−798. doi: 10.3969/j.issn.0253-2409.2019.07.003
    [4] WU H, WU M, WANG B Y, YONG X, LIU Y S, LI B J, LIU B Z, LU S Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane[J]. J Energy Chem,2020,48(9):43−53.
    [5] AKBAYRAK S, ÖZKAR S. Ammonia borane as hydrogen storage materials[J]. Int J Hydrog Energy,2018,43(40):18592−18606. doi: 10.1016/j.ijhydene.2018.02.190
    [6] FENG Y F, WANG H Z, CHEN X D, LV F, LI Y Z, ZHU Y M, XU C J, ZHANG X B, LIU H R, LI H. Simple synthesis of Cu2O-CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int J Hydrog Energy,2020,45(35):17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [7] ZHANG H, GU X J, LIU P L, SONG J, CHENG J, SU H Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride[J]. J Mater Chem A,2017,5(5):2288−2296. doi: 10.1039/C6TA08987A
    [8] SANYAL U, DEMIRCI U B, JAGIRDAR B R, MIELE P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation[J]. ChemSusChem,2011,4(12):1731−1739. doi: 10.1002/cssc.201100318
    [9] PENG S G, LIU J C, ZHANG J, WANG F Y. An improved preparation of graphene supported ultrafine ruthenium(0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane[J]. Int J Hydrog Energy,2015,40(34):10856−10866. doi: 10.1016/j.ijhydene.2015.06.113
    [10] YURDERI M, BULUT A, ERTAS I E, ZAHMAKIRAN M, KAYA M. Supported copper-copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia-borane for chemical hydrogen storage[J]. Appl Catal B: Environ,2016,186:212−212. doi: 10.1016/j.apcatb.2016.01.028
    [11] ZHOU L M, MENG J, LI P, TAO Z L, MAI L Q, CHEN J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane[J]. Mater Horiz,2017,4(2):268−273. doi: 10.1039/C6MH00534A
    [12] CHEN W Y, LI D L, WANG Z J, QIAN G, SUI Z J, DUAN X Z, ZHOU X G, YEBOAH I, CHEN D. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst[J]. AIChE J,2017,63(1):60−65. doi: 10.1002/aic.15389
    [13] TONBUL Y, AKBAYRAK S, ÖZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci,2019,553:581−587. doi: 10.1016/j.jcis.2019.06.038
    [14] AKBAYRAK S, TONBUL, Y, ÖZKAR S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B: Environ,2016,198:162−170. doi: 10.1016/j.apcatb.2016.05.061
    [15] ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloy Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [16] YAO Q L, SHI W M, FENG G, LU Z H, ZHANG X L, TAO D J, KONG D J, CHEN X S. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. J Power Sources,2014,257:293−299. doi: 10.1016/j.jpowsour.2014.01.122
    [17] DU X Q, TAN S Y, CAI P, LUO W, CHENG G Z. A RhNiP/rGO hybrid for efficient catalytic hydrogen generation from an alkaline solution of hydrazine[J]. J Mater Chem A,2016,4(38):14572−14576. doi: 10.1039/C6TA05917A
    [18] ZHANG H, GU X J, SONG J. Co, Ni-based nanoparticles supported on graphitic carbon nitride nanosheets as catalysts for hydrogen generation from the hydrolysis of ammonia borane under broad-spectrum light irradiation[J]. Int J Hydrog Energy,2020,45(41):21273−211286. doi: 10.1016/j.ijhydene.2020.05.178
    [19] LIANG Z J, XIAO X Z, YU X Y, HUANG X, JIANG Y Q, FAN X L, CHEN L X. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloy Compd,2018,741:501−508. doi: 10.1016/j.jallcom.2017.12.151
    [20] WANG Q T, ZHANG F F, DU F L, LIU T. A cost effective cobalt nickel nanoparticles catalyst with exceptional performance for hydrolysis of ammonia-borane[J]. J Nanosci Nanotechnol,2017,17(12):9333−9338. doi: 10.1166/jnn.2017.14331
    [21] YANG Y W, FENG G, LU Z H, HU N, ZHANG F, CHEN X S. In situ synthesis of reduced graphene oxide supported Co nanoparticles as efficient catalysts for hydrogen generation from NH3BH3[J]. Acta Phys-Chim Sin,2014,30(6):1180−1186. doi: 10.3866/PKU.WHXB201404141
    [22] YANG Y W, ZHANG F, WANG H L, YAO Q L, CHEN X S, LU Z H. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater,2014,1−9.
    [23] ZHANG Z J, LU Z H, TAN H L, CHEN X S, YAO Q L. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine[J]. J Mater Chem A,2015,3(46):23520−23529. doi: 10.1039/C5TA06197K
    [24] DU X Q, LIU C, DU C, CAI P, CHENG G Z, LUO W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature[J]. Nano Res,2017,10(8):2856−2865. doi: 10.1007/s12274-017-1494-6
    [25] CAO N, LUO W, CHENG G Z. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrog Energy,2013,38(27):11964−11972. doi: 10.1016/j.ijhydene.2013.06.125
    [26] UZUNDURUKAN A, DEVRIM Y. Carbon nanotube-graphene hybrid supported platinum as an effective catalyst for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrog Energy,2019,44(49):26773−26782. doi: 10.1016/j.ijhydene.2019.08.153
    [27] FERNANDE R, PATEL N, MIOTELLO A, JAISWAL R, KOTHARI D C. Dehydrogenation of ammonia borane with transition metal-doped Co-B alloy catalysts[J]. Int J Hydrog Energy,2012,37(3):2397−2406. doi: 10.1016/j.ijhydene.2011.10.119
    [28] YAO Q L, LU Z H, WEI H, CHEN X S, ZHU J. Highly Pt-like activity of Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A,2016,4(22):8579−8583. doi: 10.1039/C6TA02004F
    [29] YAN J M, ZHANG X B, HAN S, SHIOYAMA H, XU Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Angew Chem Int Ed,2008,47(12):2287−2289. doi: 10.1002/anie.200704943
    [30] MCINTYRE N S, JOHNSTON D D, COATSWORTH L L, DAVIDSON R D. X‐ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. Surf Interface Anal,1990,15(4):265−272. doi: 10.1002/sia.740150406
    [31] ZHU F F, CHEN G Z, SUN S X, SUN X. In situ growth of Au@CeO2 core-shell nanoparticles and CeO2 nanotubes from Ce(OH)CO3 nanorods[J]. J Mater Chem A,2013,1(2):288−294. doi: 10.1039/C2TA00293K
    [32] YAO Q L, SHI Y, ZHANG X L, CHEN X S, LU Z H. Facile synthesis of platinum–cerium(IV) oxide hybrids arched on reduced graphene oxide catalyst in reverse micelles with high activity and durability for hydrolysis of ammonia borane[[J]. Chem-Asian J,2016,11(22):3251−3257. doi: 10.1002/asia.201601147
    [33] AKBAYRAK S, TANEROĞLU O, ÖZKAR S. Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. New J Chem,2017,41(14):6546−6552. doi: 10.1039/C7NJ01035D
    [34] LIU P L, GU X J, KANG K, ZHANG H, CHENG J, SU H Q. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Appl Mater Interfaces,2017,9(12):10759−10767. doi: 10.1021/acsami.7b01161
    [35] YANG L, SU J, MENG X Y, LUO W, CHENG G Z. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane[J]. J Mater Chem A,2013,1(34):10016−10023. doi: 10.1039/c3ta11835e
    [36] MEN Y N, SU J, HUANG C Z, LIANG L J, CAI P, CHENG G Z, LUO W. Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Chin Chem Lett,2018,29:1671−1674. doi: 10.1016/j.cclet.2018.04.009
    [37] YANG L, CAO N, DU C, DAI H M, HU K, LUO W, CHENG G Z. Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J]. Mater Lett,2014,115:113−116. doi: 10.1016/j.matlet.2013.10.039
    [38] YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. Appl Mater Interfaces,2013,5(16):8231−8240. doi: 10.1021/am402373p
    [39] MENG X Y, YANG L, CAO N, DU C, HU K, SU J, LUO W, CHENG G Z. Graphene-supported trimetallic core-shell Cu@CoNi nanoparticles for catalytic hydrolysis of amine borane[J]. Chem Plus Chem,2014,79(2):325−332. doi: 10.1002/cplu.201300336
    [40] KANTÜRK F A. Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions[J]. Int J Hydrog Energy,2013,38(22):9186−9197. doi: 10.1016/j.ijhydene.2013.05.081
    [41] YAO Q L, LU Z H, YANG Y W, CHEN Y Z, CHEN X S, JIANG H L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res,2018,11:4412−4422. doi: 10.1007/s12274-018-2031-y
    [42] XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364−370. doi: 10.1016/j.jpowsour.2006.09.043
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-04-11
  • 网络出版日期:  2021-04-27

目录

    /

    返回文章
    返回