留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis

ZHANG Lin-na ZHANG Juan WANG Guo-fu ZHAO Wen-tao CHEN Jian-gang

张淋娜, 张娟, 王国富, 赵文涛, 陈建刚. 氧化处理碳气凝胶载体以调节Ru/CA催化剂的费托性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60031-8
引用本文: 张淋娜, 张娟, 王国富, 赵文涛, 陈建刚. 氧化处理碳气凝胶载体以调节Ru/CA催化剂的费托性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60031-8
ZHANG Lin-na, ZHANG Juan, WANG Guo-fu, ZHAO Wen-tao, CHEN Jian-gang. Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60031-8
Citation: ZHANG Lin-na, ZHANG Juan, WANG Guo-fu, ZHAO Wen-tao, CHEN Jian-gang. Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60031-8

氧化处理碳气凝胶载体以调节Ru/CA催化剂的费托性能

doi: 10.1016/S1872-5813(22)60031-8

Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis

Funds: The project was supported by the National Natural Science Foundation of China (22072175),the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (Class A) (XDA03040200) and Beijing Sanju Environmental Protection & New Materials Co., Ltd (SJHT-18038).
More Information
  • 摘要: 氧化处理碳材料已被证明是用于开发高效和稳定负载催化剂的有效方法。用不同的氧化剂(H2O2和HNO3)对碳气凝胶(CA)的表面进行了功能化处理。在功能化、未功能化的CA载体上采用浸渍法制备了一系列的Ru基催化剂。利用XRD、Raman光谱、N2物理吸附-脱附、H2-TPR、FT-IR和XPS系统地研究了氧化处理对碳气凝胶的织构特征、形成的表面含氧官能团的类型和含量、金属与载体的相互作用以及对催化剂费托反应性能的影响。实验结果表明,未功能化的催化剂显示出最高的初始活性和糟糕的稳定性。相比之下,Ru/CA−H2O2催化剂表现出优异的活性和C5+的选择性。表征结果表明,氧化处理增加了碳气凝胶的缺陷,从而增加了比表面积。载体表面含氧官能团含量的提高增强了载体和Ru纳米颗粒之间的相互作用,提高了催化剂的稳定性。然而,表面上过多的含氧官能团降低了碳气凝胶负载的Ru催化剂的活性和C5+选择性。
  • Figure  1  XRD patterns of (a) the fresh catalysts and (b)the spent catalysts.

    Figure  2  TEM images of the reduction Ru/CA-X catalysts (a): Ru/CA; (c): Ru/CA−H2O2; (e): Ru/CA−HNO3. TEM images of the spent Ru/CA-X catalysts (b): Ru/CA; (d): Ru/CA−H2O2; (f): Ru/CA−HNO3.

    Figure  3  Raman spectra of the CA-X supports.

    Figure  4  BET characterization of the Ru/CA-X catalysts (a): Isotherms of the nitrogen adsorption–desorption curves, (b): BJH pore size distribution curves calculated from the nitrogen desorption isotherms.

    Figure  5  FT-IR spectra of the Ru/CA-X catalysts.

    Figure  6  H2-TPR profiles of the Ru/CA-X catalysts.

    Figure  7  XPS spectra of the Ru/CA-X catalysts (a): the whole XPS spectra, (b): C 1s, (c): O 1s, (d): Ru 3p. XPS spectra of the reduced Ru/CA-X catalysts(e), C 1s, (f): O 1s.

    Figure  8  Catalytic performances of the Ru/CA-X catalysts (a): CO conversion, (b): CH4, (c): CO2, (d): C5+ selectivity versus time on stream.

    Table  1  Ratio of I(D) to I(G) of the CA-X supports from Raman spectra.

    SamplesI(D)/I(G)
    Ru/CA2.61
    Ru/CA−H2O22.90
    Ru/CA−HNO32.72
    下载: 导出CSV

    Table  2  Textural properties and Ru elemental analysis of the Ru/CA-X catalysts

    SamplesSBETa/(m2·g−1)Vporeb/(cm3·g−1)Dporec/nmRu mass percentage w/%
    Ru/CA531.421.2722.284.24
    Ru/CA−H2O2594.271.3619.954.76
    Ru/CA−HNO3592.411.3120.434.17
    a: BET surface area, b: Cumulative volume of pores by BJH desorption, c: Average pore diameter calculated by 4 × vpore/SBET, d: mass fraction of Ru was measured by ICP
    下载: 导出CSV

    Table  3  Concentrations of surface oxygen groups of the Ru/CA-X catalysts.

    Atom typePeak position/eVGroupPercentage/%
    Ru/CARu/CA−H2O2Ru/CA−HNO3
    C 1s284.8C−C62.3552.8849.13
    286.0C−O8.9013.8512.78
    287.3C=O11.7310.669.83
    288.8−COOH8.779.1914.71
    291.5π−π*8.267.534.59
    O 1s531.4C=O30.4529.5021.87
    532.5−OH30.2234.8741.16
    533.4−O−28.9724.7322.37
    534.8−COOH7.808.4412.60
    536.4H2O2.572.472.00
    O/C ratio0.360.500.52
    下载: 导出CSV
  • [1] ZHANG Q, KANG J, WANG Y, Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J], ChemCatChem, 2010, 2(9): 1030-1058.
    [2] LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N, Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J], Nat Catal, 2018, 1(10): 787-793.
    [3] ZHANG Y, YANG X, YANG X, DUAN H, QI H, SU Y, LIANG B, TAO H, LIU B, CHEN, SU X, HUANG Y, ZHANG T, Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts[J], Nat Commun, 2020, 11(1): 3185.
    [4] DUNN B C, COLE P, COVINGTON D, WEBSTER M C, PUGMIRE R J, ERNST R D, EYRING E M, SHAH NHUFFMAN G P, Silica aerogel supported catalysts for Fischer–Tropsch synthesis[J], Appl Catal A: Gen, 2005, 278(2): 233-238.
    [5] BAHOME M C, JEWELL L L, HILDEBRANDT D, GLASSER DCOVILLE N J, Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes[J], Appl Catal A: Gen, 2005, 287(1): 60-67.
    [6] CARBALLO J M G, YANG J, HOLMEN A, GARC A-RODR GUEZ S, ROJAS S, OJEDA MFIERRO J L G, Catalytic effects of ruthenium particle size on the Fischer–Tropsch synthesis[J], J Catal, 2011, 284(1): 102-108.
    [7] GONZALO-CHAC N L, ALMOHALLA M, GALLEGOS-SUAREZ E, GUERRERO-RUIZ A, RODR GUEZ-RAMOS I, Effects of the reduction temperature over ex-chloride Ru Fischer–Tropsch catalysts supported on high surface area graphite and promoted by potassium[J], Appl Catal A: Gen, 2014, 480: 86-92.
    [8] ESLAVA J L, SUN X, GASCON J, KAPTEIJN FRODR GUEZ-RAMOS I, Ruthenium particle size and cesium promotion effects in Fischer–Tropsch synthesis over high-surface-area graphite supported catalysts[J], Catal Sci Technol, 2017, 7(5): 1235-1244.
    [9] CAI Q, LI J, Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer–Tropsch synthesis[J], Catal Commun, 2008, 9(10): 2003-2006.
    [10] ESLAVA J L, IGLESIAS-JUEZ A, AGOSTINI G, FERN NDEZ-GARCı́A M, GUERRERO-RUIZ ARODRı́GUEZ-RAMOS I, Time-resolved XAS investigation of the local environment and evolution of oxidation states of a Fischer–Tropsch Ru–Cs/C catalyst[J], ACS Catal, 2016, 6(3): 1437-1445.
    [11] LIUZZI D, P REZ-ALONSO F J, ROJAS S, Ru-M (M=Fe or Co) catalysts with high Ru surface concentration for Fischer–Tropsch synthesis[J], Fuel, 2021, 293.
    [12] BEPARI S, LI X, ABROKWAH R, MOHAMMAD N, ARSLAN M, KUILA D, Co-Ru catalysts with different composite oxide supports for Fischer–Tropsch studies in 3d-printed stainless steel microreactors[J], Appl Catal A: Gen, 2020, 608.
    [13] ZHANG Q, YU , JCORMA A, Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities[J], Adv Mater, 2020, 32(44): e2002927.
    [14] SONAL, PANT K KUPADHYAYULA S, An insight into the promotional effect on Fe-Co bimetallic catalyst in the Fischer Tropsch reaction: A drifts study[J], Fuel, 2020, 276.
    [15] WAN H-J, WU B-S, ZHANG C-H, XIANG H-W, LI Y-W, XU B-F, YI F, Study on Fe–Al2O3 interaction over precipitated iron catalyst for Fischer–Tropsch synthesis[J], Catal Commun, 2007, 8(10): 1538-1545.
    [16] GERBER I CSERP P, A theory/experience description of support effects in carbon-supported catalysts[J], Chem Rev, 2020, 120(2): 1250-1349.
    [17] LU Z, CHEN G, SIAHROSTAMI S, CHEN Z, LIU K, XIE J, LIAO L, WU T, LIN D, LIU Y, JARAMILLO T F, N RSKOV J KCUI Y, High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J], Nat Catal, 2018, 1(2): 156-162.
    [18] MALEKI H, H SING N, Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects[J], Appl Catal B-Environ, 2018, 221: 530-555.
    [19] WU M, HOU X, QUAN Y, ZHAO J, REN J, Catalytic hydrogenation of methyl acetate to ethanol over boron doped carbon aerogels supported Cu catalyst[J], ChemistrySelect, 2020, 5(37): 11517-11521.
    [20] YU S, SONG S, LI R, FANG B, The lightest solid meets the lightest gas: An overview of carbon aerogels and their composites for hydrogen related applications[J], Nanoscale, 2020, 12(38): 19536-19556.
    [21] ZHANG Y, SU X, LI L, QI H, YANG C, LIU W, PAN X, LIU X, YANG X, HUANG Y, ZHANG T, Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis[J], ACS Catalysis, 2020, 10(21): 12967-12975.
    [22] LIU Z, YANG X, HU G, FENG L, Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction[J], ACS Sustain Chem Eng, 2020, 8(24): 9136-9144.
    [23] GUO Y, MEI S, YUAN K, WANG D-J, LIU H-C, YAN C-H, ZHANG Y-W, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and h-spillover effect[J], ACS Catal, 2018, 8(7): 6203-6215.
    [24] ZANUTELO C, LANDERS R, CARVALHO W A, COBO A J G, Carbon support treatment effect on Ru/C catalyst performance for benzene partial hydrogenation[J], Appl Catal A: Gen, 2011, 409-410: 174-180.
    [25] CHEN J, CHEN Q, MA Q, Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes[J], J Colloid Interf Sci, 2012, 370(1): 32-38.
    [26] TANG T, YIN C, XIAO N, GUO M, XIAO F-S, High activity in catalytic oxidation of benzyl alcohol with molecular oxygen over carboxylic-functionalized carbon nanofiber-supported ruthenium catalysts[J], Catal Lett, 2008, 127(3-4): 400-405.
    [27] PENDYALA V R R, JACOBS G, GRAHAM U M, SHAFER W D, MARTINELLI M, KONG LDAVIS B H, Fischer–tropsch synthesis: Influence of acid treatment and preparation method on carbon nanotube supported ruthenium catalysts[J], Ind Eng Chem Res, 2017, 56(22): 6408-6418.
    [28] KUMI D O, DLAMINI M W, PHAAHLAMOHLAKA T N, MHLANGA S D, COVILLE N JSCURRELL M S, Selective CO methanation over Ru supported on carbon spheres: The effect of carbon functionalization on the reverse water gas shift reaction[J], Catal Lett, 2018, 148(11): 3502-3513.
    [29] LI Y, LU W, ZHAO Z, ZHAO M, LYU Y, GONG L, ZHU H, DING Y, Tuning surface oxygen group concentration of carbon supports to promote Fischer–Tropsch synthesis[J], Appl Catal A: Gen, 2021, 613.
    [30] JAMATIA R, GUPTA A, PAL A K, Ru-Ferrite-decorated graphene (RuFG): A sustainable and efficient catalyst for conversion of aromatic aldehydes and nitriles to primary amides in aqueous medium[J], ACS Sustain Chem Eng, 2017, 5(9): 7604-7612.
    [31] LIN Z, LIU S, LIU Y, LIU Z, ZHANG S, ZHANG X, TIAN Y, TANG Z, Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting[J], J Power Sources, 2021, 514.
    [32] WAN H-J, WU B-S, TAO Z-C, LI T-Z, AN X, XIANG H-W, LI Y-W, Study of an iron-based Fischer–Tropsch synthesis catalyst incorporated with SiO2[J], J Mol Catal A: Chem, 2006, 260(1-2): 255-263.
    [33] HOU W, WU B, YANG Y, HAO Q, TIAN L, XIANG H, LI Y, Effect of SiO2 content on iron-based catalysts for slurry Fischer–Tropsch synthesis[J], Fuel Process Technol, 2008, 89(3): 284-291.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-04-02
  • 网络出版日期:  2022-05-19

目录

    /

    返回文章
    返回