留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation

ZHANG Jian-yuan XING Shuang-feng ZHAO Shi-chao XIONG Mi ZHANG Bian-qin TONG Xi-li QIN Yong GAO Zhe

张见远, 邢双凤, 赵世超, 熊咪, 张变琴, 童希立, 覃勇, 高哲. 碳布负载的高分散CoPx纳米粒子及其甲醇电催化氧化反应性能的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60040-9
引用本文: 张见远, 邢双凤, 赵世超, 熊咪, 张变琴, 童希立, 覃勇, 高哲. 碳布负载的高分散CoPx纳米粒子及其甲醇电催化氧化反应性能的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60040-9
ZHANG Jian-yuan, XING Shuang-feng, ZHAO Shi-chao, XIONG Mi, ZHANG Bian-qin, TONG Xi-li, QIN Yong, GAO Zhe. Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60040-9
Citation: ZHANG Jian-yuan, XING Shuang-feng, ZHAO Shi-chao, XIONG Mi, ZHANG Bian-qin, TONG Xi-li, QIN Yong, GAO Zhe. Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60040-9

碳布负载的高分散CoPx纳米粒子及其甲醇电催化氧化反应性能的研究

doi: 10.1016/S1872-5813(22)60040-9
详细信息
  • 中图分类号: O643.3

Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation

More Information
  • 摘要: 直接甲醇燃料电池(DMFC)是一种有潜力的商用燃料电池技术,目前贵金属阳极材料昂贵的价格阻碍其发展。开发分散均匀粒径分布窄的金属磷化物催化剂仍然是一个挑战。本研究通过原子层沉积法(ALD)在碳布上沉积CoOx,然后经过磷化处理获得CoPx。通过改变ALD臭氧脉冲(ALD-O3)的循环数,调控CoOx(ALD-CoOx)在碳布上的成核生长方式,获得粒径小、分布均匀的CoPx纳米粒子。经过优化后的CoPx纳米催化剂(CoPx/40-CC)在碱性溶液中对甲醇电催化氧化反应表现出优异的活性(153 mA/cm2),高于浸渍法制备的催化剂(Imp-CoPx/CC),尽管CoPx/40-CC的CoPx负载量低于Imp-CoPx/CC。结果表明,甲醇电催化氧化过程中的电子转移和传质动力学得到了提高,这得益于CoPx较小的粒径和均匀的分布。
  • Figure  1  Schematic illustration of the catalysts prepared by ALD.

    Figure  2  TEM images of (a) CoOx/10-CC, (b) CoOx/40-CC, (c) CoOx/75-CC, (e) CoPx/10-CC, (f) CoPx/40-CC, and (g) CoPx/75-CC, where the inset shows the nanoparticle size statistics; HRTEM images of (d) CoOx/40-CC, and (h) CoPx/40-CC.

    Figure  3  TEM images of (a) Imp-CoOx/CC and (b) Imp-CoPx/CC.

    Figure  4  XRD patterns of CoPx/10-CC, CoPx/40-CC, CoPx/75-CC, and Imp-CoPx/CC.

    Figure  5  XPS (a) Co 2p and (b) P 2p spectra of CoPx/10-CC, CoPx/40-CC, CoPx/75-CC, and Imp-CoPx/CC.

    Figure  6  (a) CVs, (b) bar graph(@1.7 V vs RHE), and (c) EIS curves of CoPx/n-CC and Imp-CoPx/CC for MOR in 1 mol/L KOH + 1 mol/L methanol. (d) Tafel curves and (g) chronoamperometric (CA) results of CoPx/10-CC, CoPx/40-CC, CoPx/75-CC, and Imp-CoPx/CC. (e) LSV of CoPx/40-CC in 1 mol/L KOH, with and without 1 mol/L methanol, (f) CV curves of CoPx/40-CC in 1 mol/L KOH +1 mol/L CH3OH solution at different scanning rates (10–200 mV/s), where the inset shows the proportionality of current density (@1.7 V vs RHE) vs the square root of the scan rate. (h) CVs and (i) bar graph (@1.7 V vs RHE) of nCoPx/40-CC and Imp-CoPx/CC for MOR in 1 mol/L KOH + 1 mol/L methanol.

    Table  1  Comparison of the MOR performance of CoPx/40-CC with those of other catalysts reported in the literatures.

    ElectrocatalystElectrolyte solutionCurrent density at 1.7 V
    vs RHE (mA/cm2)
    Potential at 10 mA/cm2 (V)Reference
    CoPx/40-CC1 mol/L KOH +
    1 mol/L methanol
    1531.39this work
    CoPx hollow spheres1 mol/L KOH +
    1 mol/L methanol
    311.62[19]
    CoP nanoflowers1 mol/L KOH +
    1 mol/L methanol
    1.59[34]
    Hollow CoP OCHs1 mol/L KOH +
    1 mol/L methanol
    1.37[35]
    Porous CoP NSs1 mol/L KOH +
    1 mol/L methanol
    1.42[35]
    Co3(PO4)2 nanosphere1 mol/L KOH +
    1 mol/L methanol
    146[36]
    下载: 导出CSV
  • [1] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486(7401):43−51. doi: 10.1038/nature11115
    [2] KAKATI N, MAITI J, LEE S H, JEE S H, VISWANATHAN B, YOON Y S. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru?[J]. Chem Rev,2014,114(24):12397−12429. doi: 10.1021/cr400389f
    [3] LI M, DUANMU K, WAN C, CHENG T, ZHANG L, DAI S, CHEN W, ZHAO Z, LI P, FEI H, ZHU Y, YU R, LUO J, ZANG K, LIN Z, DING M, HUANG J, SUN H, GUO J, PAN X, GODDARD W A, SAUTET P, HUANG Y, DUAN X. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nat Catal,2019,2(6):495−503. doi: 10.1038/s41929-019-0279-6
    [4] LI H H, ZHAO S, GONG M, CUI C H, HE D, LIANG H W, WU L, YU S H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation[J]. Angew Chem Int Ed,2013,52(29):7472−7476. doi: 10.1002/anie.201302090
    [5] HUANG H, YANG S, VAJTAI R, WANG X, AJAYAN P M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts[J]. Adv Mater,2014,26(30):5160−5165. doi: 10.1002/adma.201401877
    [6] CHEN Q, YANG Y, CAO Z, KUANG Q, DU G, JIANG Y, XIE Z, ZHENG L. Excavated Cubic Platinum-Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity[J]. Angew Chem Int Ed,2016,55(31):9021−9025. doi: 10.1002/anie.201602592
    [7] XUE S, DENG W, YANG F, YANG J, AMIINU I S, HE D, TANG H, MU S. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation[J]. ACS Catal,2018,8(8):7578−7584. doi: 10.1021/acscatal.8b00366
    [8] ZHAO X, YIN M, MA L, LIANG L, LIU C, LIAO J, LU T, XING W. Recent advances in catalysts for direct methanol fuel cells[J]. Energy Environ Sci,2011,4(8):2736−2753. doi: 10.1039/c1ee01307f
    [9] ZHAI M, CHEN F, WU N, GUO R, ZHANG X, HU T, MA M. Porous layered cobalt nanocrystal/nitrogen-doped carbon composites as efficient and CO-resistant electrocatalysts for methanol oxidation reaction[J]. Appl Surf Sci,2021,545:149016. doi: 10.1016/j.apsusc.2021.149016
    [10] YANG W, YANG X, JIA J, HOU C, GAO H, MAO Y, WANG C, LIN J, LUO X. Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation[J]. Appl Catal B,2019,244:1096−1102. doi: 10.1016/j.apcatb.2018.12.038
    [11] CUI X, GUO W, ZHOU M, YANG Y, LI Y, XIAO P, ZHANG Y, ZHANG X. Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction[J]. ACS Appl Mater Inter,2015,7(1):493−503. doi: 10.1021/am506554b
    [12] PEI Y, CHENG Y, CHEN J, SMITH W, DONG P, AJAYAN P M, YE M, SHEN J. Recent developments of transition metal phosphides as catalysts in the energy conversion field[J]. J Mater Chem A,2018,6(46):23220−23243. doi: 10.1039/C8TA09454C
    [13] SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev,2016,45(6):1529−1541. doi: 10.1039/C5CS00434A
    [14] WALCARIUS A. Mesoporous materials and electrochemistry[J]. Chem Soc Rev,2013,42(9):4098−4140. doi: 10.1039/c2cs35322a
    [15] TONG X, QIN Y, GUO X, MOUTANABBIR O, AO X, PIPPEL E, ZHANG L, KNEZ M. Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials[J]. Small,2012,8(22):3390−3395. doi: 10.1002/smll.201200839
    [16] HUANG L, ZHANG X, WANG Q, HAN Y, FANG Y, DONG S. Shape-Control of Pt-Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation[J]. J Am Chem Soc,2018,140(3):1142−1147. doi: 10.1021/jacs.7b12353
    [17] TANG C, ZHANG R, LU W, HE L, JIANG X, ASIRI A M, SUN X. Fe-Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation[J]. Adv Mater,2017,29(2):1602441. doi: 10.1002/adma.201602441
    [18] LIU D, LU W, WANG K, DU G, ASIRI A M, LU Q, SUN X. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology,2016,27(44):44LT02. doi: 10.1088/0957-4484/27/44/44LT02
    [19] CHEN S, YANG X, TONG X, ZHANG F, ZOU H, QIAO Y, DONG M, WANG J, FAN W. Design of 3D Hollow Porous Heterogeneous Nickel-Cobalt Phosphides for Synergistically Enhancing Catalytic Performance for Electrooxidation of Methanol[J]. ACS Appl Mater Inter,2020,12(31):34971−34979. doi: 10.1021/acsami.0c08912
    [20] GAO Z, WANG G, LEI T, LV Z, XIONG M, WANG L, XING S, MA J, JIANG Z, QIN Y. Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts[J]. Nat Commun,2022,13(1):118. doi: 10.1038/s41467-021-27785-5
    [21] GAO Z, DONG M, WANG G, SHENG P, WU Z, YANG H, ZHANG B, WANG G, WANG J, QIN Y. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions[J]. Angew Chem Int Ed,2015,54(31):9006−9010. doi: 10.1002/anie.201503749
    [22] ZHANG J, GAO Z, WANG S, WANG G, GAO X, ZHANG B, XING S, ZHAO S, QIN Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nat Commun,2019,10(1):4166. doi: 10.1038/s41467-019-11970-8
    [23] GAO Z, QIN Y. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition[J]. Acc Chem Res,2017,50(9):2309−2316. doi: 10.1021/acs.accounts.7b00266
    [24] YANG H, ZHANG B, ZHANG B, GAO Z, QIN Y. N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation[J]. Chinese J Catal,2018,39(6):1038−1043. doi: 10.1016/S1872-2067(18)63066-9
    [25] MARICHY C, BECHELANY M, PINNA N. Atomic layer deposition of nanostructured materials for energy and environmental applications[J]. Adv Mater,2012,24(8):1017−1032. doi: 10.1002/adma.201104129
    [26] YANG H, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chinese J Catal,2020,41(2):227−241. doi: 10.1016/S1872-2067(19)63440-6
    [27] XING S, GAO Z, ZHAO S, XIONG M, WANG P, ZHANG J, WANG S, WANG G, QIN Y. Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions[J]. Green Chem,2021,23(20):8116−8123. doi: 10.1039/D1GC02261J
    [28] XIONG M, GAO Z, ZHAO P, WANG G, YAN W, XING S, WANG P, MA J, JIANG Z, LIU X, MA J, XU J, QIN Y. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity[J]. Nat Commun,2020,11(1):4773. doi: 10.1038/s41467-020-18567-6
    [29] WEN Y, CAI J, ZHANG J, YANG J, SHI L, CAO K, CHEN R, SHAN B. Edge-Selective Growth of MCp2 (M = Fe, Co, and Ni) Precursors on Pt Nanoparticles in Atomic Layer Deposition: A Combined Theoretical and Experimental Study[J]. Chem Mater,2018,31(1):101−111.
    [30] ZHENG Y, QIAO J, HU J, SONG F, HUO D, YUAN J, SHEN J, NIU L, WANG A. PtIr alloy nanowire assembly on carbon cloth as advanced anode catalysts for methanol oxidation[J]. Int J Hydrog Energy,2019,44(36):20336−20344. doi: 10.1016/j.ijhydene.2019.05.218
    [31] ZHOU X, LI X, PRINS R, LV J, WANG A, SHENG Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios[J]. J Catal,2021,394:167−180. doi: 10.1016/j.jcat.2020.08.030
    [32] LONI E, SIADATI M H, SHOKUHFAR A. Mesoporous cobalt–cobalt phosphide electrocatalyst for water splitting[J]. Mater Today Energy,2020,16:100398. doi: 10.1016/j.mtener.2020.100398
    [33] SUN X, LIU C, ZHANG P, GONG LWANG M. Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution[J]. J Power Sources,2021,484.
    [34] ZHAO F, YANG H, QIN K, CUI GLIU Q. Three-dimensional heterogeneous copper cobalt phosphides Nanoflowers for enhancing catalytic performance for electro-oxidation of methanol[J]. J Chin Inst Chem Eng,2021,126:244−251.
    [35] XU J, LIU Y, LI J, AMORIM I, ZHANG B, XIONG D, ZHANG N, THALLURI S M, SOUSA J P SLIU L. Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol[J]. J Mater Chem A,2018,6(42):20646−20652. doi: 10.1039/C8TA07958G
    [36] ARUNACHALAM P, SHADDAD M, ALAMOUDI A, GHANEM MAL-MAYOUF A. Microwave-Assisted Synthesis of Co3(PO4)2 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media[J]. Catalysts, 2017, 7 (12).
    [37] YANG J, FU W, CHEN C, CHEN W, HUANG W, YANG R, KONG Q, ZHANG B, ZHAO J, CHEN C, LUO J, YANG F, DUAN X, JIANG Z, QIN Y. Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation[J]. ACS Catal,2021,11(7):4146−4156. doi: 10.1021/acscatal.0c04614
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 录用日期:  2022-03-25
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-06-22

目录

    /

    返回文章
    返回