留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ氧电极的可逆固体氧化物电池性能研究

田云峰 杨偲晨 李宜桐 章梦云 顾水丹 郑克晴 王鑫鑫 凌意瀚 蒲健 池波

田云峰, 杨偲晨, 李宜桐, 章梦云, 顾水丹, 郑克晴, 王鑫鑫, 凌意瀚, 蒲健, 池波. 基于La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ氧电极的可逆固体氧化物电池性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60049-5
引用本文: 田云峰, 杨偲晨, 李宜桐, 章梦云, 顾水丹, 郑克晴, 王鑫鑫, 凌意瀚, 蒲健, 池波. 基于La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ氧电极的可逆固体氧化物电池性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60049-5
TIAN Yun-feng, YANG Cai-chen, LI Yi-tong, ZHANG Meng-yun, GU Shui-dan, ZHENG Ke-qing, WANG Xin-xin, LING Yi-han, PU Jian, CHI Bo. Performance of reversible solid oxide cells based on La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ oxygen electrode[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60049-5
Citation: TIAN Yun-feng, YANG Cai-chen, LI Yi-tong, ZHANG Meng-yun, GU Shui-dan, ZHENG Ke-qing, WANG Xin-xin, LING Yi-han, PU Jian, CHI Bo. Performance of reversible solid oxide cells based on La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ oxygen electrode[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60049-5

基于La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ氧电极的可逆固体氧化物电池性能研究

doi: 10.1016/S1872-5813(22)60049-5
基金项目: 国家重点研发计划政府间国际合作重点专项(2021YFE0100200),国家自然科学基金(52172199);中央高校基本科研业务费专项资金青年科技基金项目(2021QN1111);中国矿业大学大型仪器设备开放共享基金。
详细信息
    作者简介:

    田云峰,男,博士. 研究方向为固体氧化物燃料电池/电解池 E-mail: yunfengup@cumt.edu.cn

    通讯作者:

    凌意瀚,博士,特聘研究员,研究方向为固体氧化物燃料电池/电解池:Tel: 15152104822 Email: lyhyy@cumt.edu.cn

  • 中图分类号: O646

Performance of reversible solid oxide cells based on La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ oxygen electrode

  • 摘要: 氢能被公认为是21世纪最有潜力的能源载体。可逆固体氧化物电池(Reversible solid oxide cells,RSOCs)由于其高效利用氢气发电和高效电解水产氢的特性引起了越来越多的关注。许多研究表明,RSOCs氧电极的极化损失和衰减是阻碍其发展的技术瓶颈。本文制备了10%mol Sc掺杂的La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3−δ (LCFSN)材料,采用半电池详细研究了该材料的氧还原催化活性(ORR)和氧析出催化活性(OER),发现LCFSN的ORR催化活性优于OER催化活性。组装了Ni-YSZ(Y0.08Zr0.92O2-δ)/YSZ/GDC(Gd0.1Ce0.9O2-δ)/LCFSN全电池并详细研究了其在燃料电池模式(SOFC)和电解池模式(SOEC)下的电化学性能,电池在800 ℃以H2为燃料时的最高功率密度可达1.471 W/cm2,在750 ℃,50%H2O和1.3 V热中性电解电压条件下其产氢速率高达627 mL/(cm2·h)。而且电池在100 h的稳定性测试中性能没有衰减,具有良好的稳定性。通过研究,证明了LCFSN是一个具有良好发展前景的氧电极材料。
  • 图  1  可逆固体氧化物电池工作原理示意图

    Figure  1  Schematic diagram of the working principle for RSOCs

    图  2  La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3-δ粉体的XRD精修图谱(a),粉体微观形貌图(b),粉体的高分辨TEM图(c)和相应的能谱元素含量分析(d)

    Figure  2  XRD pattern of La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3-δ powders (a), morphology (b), high-resolution TEM image of powder (c) and corresponding energy spectrum element content analysis (d)

    图  3  基于LCFSN材料的半电池性能研究,650−700 ℃(a)和750−850 ℃(b)开路状态下的交流阻抗谱,750 ℃时ORR模式(c)和OER模式(d)的不同电流密度下的交流阻抗谱

    Figure  3  Performance of half cell based on LCFSN. AC impedance spectra under OCV condition at 650−700 ℃ (a), at 750−850 ℃ (b), AC impedance spectra at 750 ℃ with different current densities in ORR mode (c), in OER mode (d)

    图  4  Ni-YSZ/YSZ/GDC/LCFSN全电池在H2下不同温度的I-V-P曲线(a)和开路状态下交流阻抗谱(b)

    Figure  4  I-V-P curves (a) and AC impedance spectra (b) of Ni-YSZ/YSZ/GDC/LCFSN full cells at different temperatures under H2

    图  5  Ni-YSZ/YSZ/GDC/LCFSN全电池在50%水含量下不同温度的I-V曲线(a)和开路状态下的交流阻抗谱(b)

    Figure  5  I-V curves (a) and AC impedance spectra (b) of Ni-YSZ/YSZ/GDC/LCFSN full cells at different temperatures under 50%H2O

    图  6  全电池在700 ℃不同电流密度下放电稳定性测试

    Figure  6  Stability test of cell at 700 ℃ at different current densities

    图  7  Ni-YSZ/YSZ/GDC/LCFSN无烧结全电池在H2下不同温度的I-V-P曲线(a)和开路状态下的交流阻抗谱(b),750 ℃@0.4 A/cm2的极化曲线(c)和12 h的稳定性测试曲线(d)

    Figure  7  I-V-P curves (a) and EIS curves (b) at different temperatures, polarization curves at 750 ℃@0.4 A/cm2 (c), 12 h stability test (d) of Ni-YSZ/YSZ/GDC/LCFSN non-sintered single cell under H2

    图  8  Ni-YSZ/YSZ/GDC/LCFSN全电池测试后的微观形貌图(a)和相应的面扫描能谱图(b)

    Figure  8  Microstructure (a) and EDS mapping (b) of Ni-YSZ/YSZ/GDC/LCFSN cell after test

  • [1] KIM D, PARK J W, CHAE M S. An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells[J]. J Mater Chem A,2021,9(9):5507−5521. doi: 10.1039/D0TA11233J
    [2] 朱冕, 赵加佩, 李欣珂, 梁超余, 袁金良. 可逆固体氧化物燃料电池(rSOFC)技术的研究进展[J]. 电源技术,2020,44(3):469−474.

    ZHU Mian, ZHAO Jia-pei, LI Xin-ke, LIANG Chao-yu, YUAN Jin-liang. Research status and prospects of reversible solid oxide fuel cell (rSOFC) technology[J]. Chin J. Power Sources,2020,44(3):469−474.
    [3] SHIN J, LEE Y J, JAN A, CHOI S M, YOON K J. Highly active and thermally stable single-atom catalysts for high-temperature electrochemical devices[J]. Energy Environ Sci,2020,13:4903−4920. doi: 10.1039/D0EE01680B
    [4] 赵建军, 甄文龙, 吕功煊. 固体氧化物电解CO2技术现状与前景[J]. 燃料化学学报, 2022, 4(50).

    ZHAO Jian-jun, ZHEN Wen-long, LU Gong-xuan. Solid oxide electrolysis of carbon dioxide: status and perspectives[J]. J Fuel Chem Technol, 2022, 4(50).
    [5] HAUCH A, KUNGAS R, BLENNOW P, HANSEN A B, MOGENSEN M B. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513).
    [6] VIBHU V, VINKE I C, EICHEL R A. Cobalt substituted Pr2Ni1-xCoxO4 + δ (x= 0, 0.1, 0.2) oxygen electrodes: Impact on electrochemical performance and durability of solid oxide electrolysis cells[J]. J Power Sources,2021,482:228909. doi: 10.1016/j.jpowsour.2020.228909
    [7] PARK B K, ZHANG Q, VOORHEES P W, BARNETT S A. Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects[J]. Energy Environ Sci,2019,12:3053−3062. doi: 10.1039/C9EE01664C
    [8] HOU Q, GUAN C, XIAO G, WANG J, ZHU Z. Effect of oxygen partial pressure on solid oxide electrolysis cells[J]. Acta Phys Chim Sin,2019,35(3):284−291. doi: 10.3866/PKU.WHXB201804171
    [9] 梁明德, 于波, 文明芬, 陈靖, 徐景明, 翟玉春. 阴极支撑Ni-YSZ/YSZ/LSM-YSZ固体氧化物电解池制氢性能[J]. 中国稀土学报,2009,27(5):647−651.

    LIANG Ming-de, YU Bo, WEN Ming-fen, CHEN Jing, XU Jing-ming, ZHAI Yu-chun. Cathode-supported Ni-YSZ/YSZ/LSM-YSZ solid oxide electrolytic cell for hydrogen production[J]. J. Rare Earths,2009,27(5):647−651.
    [10] YANG C, COFFIN A, CHEN F. High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance[J]. Int J Hydrog Energy,2010,35(8):3221−3226. doi: 10.1016/j.ijhydene.2010.01.056
    [11] SUBOTI V, FUTAMURA S, HARRINGTON G F, MASTSUDA J, SASAKI K. Towards understanding of oxygen electrode processes during solid oxide electrolysis operation to improve simultaneous fuel and oxygen generation[J]. J Power Sources,2021,492(1):229600.
    [12] PARK J, JUNG C, KIM K J, KIM D, SHIN H R, HONG J E, LEE K T. Enhancing bifunctional electrocatalytic activities of oxygen electrodes via incorporating highly conductive Sm3 + and Nd3 + double-doped ceria for reversible solid oxide cells[J]. ACS Appl Mater Interfaces,2021,13(2):2496−2506. doi: 10.1021/acsami.0c17238
    [13] EBBESEN S D, SUN X, MOGENSEN M B. Understanding the processes governing performance and durability of solid oxide electrolysis cells[J]. Faraday Discuss,2015,182:393−422. doi: 10.1039/C5FD00032G
    [14] CHEN K, JIANG S P. Surface segregation in solid oxide cell oxygen electrodes: phenomena, mitigation strategies and electrochemical properties[J]. Electrochemical Energy Reviews,2020,1−36.
    [15] MA Z, YIN Y, LEI J, ZHOU N. A robust high performance cobalt-free oxygen electrode La0.5Sr0.5Fe0.8Cu0.15Nb0.05O3-δ for reversible solid oxide electrochemical cell[J]. J Power Sources,2017,340(2):373−379.
    [16] MENG X, SHEN Y, XIE M, YIN Y, YANG N, MA Z, JOAO C, DIAIZ D, LIU S. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production[J]. J Power Sources,2016,306(29):226−232.
    [17] LIU X, HAN D, ZHOU Y, MENG X, WU H, LI J, ZENG F, ZHAN Z. Sc-substituted La0.6Sr0.4FeO3-δ mixed conducting oxides as promising electrodes for symmetrical solid oxide fuel cells[J]. J Power Sources,2014,246:457−463. doi: 10.1016/j.jpowsour.2013.07.111
    [18] 赵晓虹, 王勇, 刘立敏, 李斌, 固体氧化物燃料电池新型钙钛矿. La0.9Ca0.1Fe0.9Nb0.1O3-δ阳极的制备及其性能研究[J]. 无机材料学报,2017,32(11):1188−1194.

    ZHAO Xiao-hong, WANG Yong, LIU Li-min, LI Bin. Preparation and properties of novel perovskite La0.9Ca0.1Fe0.9Nb0.1O3-δ anode for solid ooxide fuel cells[J]. J Inorg Mater.,2017,32(11):1188−1194.
    [19] LIU X, JIN F, LIU X, SUN N, LI J, SHEN Y, WANG F, YANG L, CHU X, XU M. Effect of calcium doping on Sm1–xCaxBaCo2O5 + δ cathode materials for intermediate-temperature solid oxide fuel cells[J]. Electrochim Acta,2021,390:138830. doi: 10.1016/j.electacta.2021.138830
    [20] XIE X, XU Q, HUANG D, XIAO J, CHEN M, ZHAO K, CHEN D, ZHANG F. Insights into surface alkaline-earth segregation on the surface of La0.3Me0.7Fe0.7Cr0.3O3−δ (Me= Sr, Ca) porous electrodes for oxygen reduction reaction[J]. Appl Surf Sci,2021,566:150659. doi: 10.1016/j.apsusc.2021.150659
    [21] TIAN Y, LIU Y, NADEN A, JIA L, XU M, CUI W, CHI B, PU J, IRVINE J, LI J. Boosting CO2 electrolysis performance via calcium-oxide-looping combined with in situ exsolved Ni–Fe nanoparticles in a symmetrical solid oxide electrolysis cell[J]. J Mater Chem A,2020,8:14895−14899. doi: 10.1039/D0TA05518B
    [22] 田云峰. 铁酸镧基固体氧化物电池电极材料电化学性能研究[D]. 武汉: 华中科技大学, 2020.

    TIAN Yun-feng. Study on the electrochemical performance of lanthanum ferrite-based electrode for solid oxide cells[D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [23] WANG W, TIAN Y, LIU Y, ABHISHEK N, LI Y, CHI B, PU J. Tailored Sr-Co-free perovskite oxide as an air electrode for high-performance reversible solid oxide cells[J]. Sci China Mater,2021,64(7):1621−1631. doi: 10.1007/s40843-020-1567-2
    [24] LIU Y, TIAN Y, WANG W, LI Y, PU J. Promoting electrocatalytic activity and stability via Er0.4Bi1.6O3-δ in situ decorated La0.8Sr0.2MnO3-δ oxygen electrode in reversible solid oxide cell[J]. ACS Appl Mater Interfaces,2020,12(52):57941−57949. doi: 10.1021/acsami.0c18583
    [25] TIAN Y, WANG W, LIU Y, ZHANG L, LI J. Cobalt-free perovskite oxide La0.6Sr0.4Fe0.8Ni 0.2O3-δ as active and robust oxygen electrode for reversible solid oxide cells[J]. ACS Appl Energy Mater,2019,2(5):3297−3305. doi: 10.1021/acsaem.9b00115
    [26] TIAN Y, YANG C, LI Y. A simple Sc doping strategy to enhance electrocatalytic activity and stability in symmetrical solid oxide cells[J]. J Electrochem Soc,2021,168(10):104515. doi: 10.1149/1945-7111/ac2e1e
    [27] LOPEZ-ROBLEDO M J, LAGUNA-BERCERO M A, LARREA A, ORERA V M. Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes[J]. J Power Sources,2018,378:184−189. doi: 10.1016/j.jpowsour.2017.12.035
    [28] LAGUNA-BERCERO M A, MONZON H, LARREA A, ORERA V M. Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode[J]. J Mater Chem A,2016,4(4):1446−1453. doi: 10.1039/C5TA08531D
    [29] YANG E H, NOH Y S, RAMESH S, LIM S S, MOON D J. The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3 (M= Sr, Ca) perovskite catalysts on dry reforming of methane[J]. Fuel Process Technol,2015,134:404−413. doi: 10.1016/j.fuproc.2015.02.023
    [30] HUI F, KEANE M, SINGH P, HAN M. Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell[J]. J Power Sources,2014,268(5):634−639.
    [31] AI N, CHEN M, HE S, CHEN K, ZHANG T, JIANG S P. High performance nanostructured bismuth oxide–cobaltite as a durable oxygen electrode for reversible solid oxide cells[J]. J Mater Chem A,2018,6(15):6510−6520. doi: 10.1039/C8TA00370J
    [32] AI N, HE S, LI N, ZHANG Q, RICKARD W, CHEN K, ZHANG T, JIANG S P. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells[J]. J Power Sources,2018,384:125−135. doi: 10.1016/j.jpowsour.2018.02.082
  • 加载中
图(8)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-06-19
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回