留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Directing the CdS nanosheet and nanowire to high efficiency for photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde by depositing Au25 nanoclusters

LI Xing-chi ZHAO Han PAN Xiao-li SU Yang LI Ren-gui WANG Hua KANG Lei-lei LIU Xiao-yan

李星池, 赵晗, 潘晓丽, 苏杨, 李仁贵, 王华, 康磊磊, 刘晓艳. CdS纳米片与纳米线负载Au25纳米团簇光催化苯甲醇无氧脱氢制苯甲醛反应的研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1825-1833. doi: 10.1016/S1872-5813(23)60373-1
引用本文: 李星池, 赵晗, 潘晓丽, 苏杨, 李仁贵, 王华, 康磊磊, 刘晓艳. CdS纳米片与纳米线负载Au25纳米团簇光催化苯甲醇无氧脱氢制苯甲醛反应的研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1825-1833. doi: 10.1016/S1872-5813(23)60373-1
LI Xing-chi, ZHAO Han, PAN Xiao-li, SU Yang, LI Ren-gui, WANG Hua, KANG Lei-lei, LIU Xiao-yan. Directing the CdS nanosheet and nanowire to high efficiency for photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde by depositing Au25 nanoclusters[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1825-1833. doi: 10.1016/S1872-5813(23)60373-1
Citation: LI Xing-chi, ZHAO Han, PAN Xiao-li, SU Yang, LI Ren-gui, WANG Hua, KANG Lei-lei, LIU Xiao-yan. Directing the CdS nanosheet and nanowire to high efficiency for photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde by depositing Au25 nanoclusters[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1825-1833. doi: 10.1016/S1872-5813(23)60373-1

CdS纳米片与纳米线负载Au25纳米团簇光催化苯甲醇无氧脱氢制苯甲醛反应的研究

doi: 10.1016/S1872-5813(23)60373-1
详细信息
  • 中图分类号: O643

Directing the CdS nanosheet and nanowire to high efficiency for photocatalytic anaerobic dehydrogenation of benzyl alcohol to benzaldehyde by depositing Au25 nanoclusters

More Information
    Corresponding author: E-mail: xyliu2003@dicp.ac.cn
  • # These authors contributed equally to this work
  • 摘要: 光催化苯甲醇直接脱氢制苯甲醛是一种利用太阳能合成精细化学品的同时生成氢气的节能途径。负载型半导体CdS基催化剂是该反应的一类典型的光催化剂。文献报道CdS的形貌对光催化水分解的性能有明显的影响,但其在光催化苯甲醇无氧脱氢制苯甲醛反应中的形貌效应研究报道极少。本工作合成了纳米片状(NS)和纳米线状(NW)两种不同形貌的CdS,发现CdS-NS表现出比CdS-NW更高的转化苯甲醇的光催化活性,但这两种催化剂对苯甲醛的选择性非常低。通过在CdS-NS和CdS-NW上负载Au25纳米团簇,光催化苯甲醇无氧脱氢制苯甲醛反应的活性和选择性明显提高,并显著减弱了CdS载体的形貌对催化反应性能的影响。以上结果为设计合成精细化学品的高效光催化剂提供了参考。
    # These authors contributed equally to this work
  • FIG. 2809.  FIG. 2809.

    FIG. 2809.  FIG. 2809.

    Figure  1  Representative TEM images with different magnifications of ((a)–(c)) CdS-NS and ((d)–(f)) CdS-NW. The inset is the corresponding Fourier-transform diffraction patterns of the ((b)–(c)) CdS-NS and ((e)–(f)) CdS-NW

    Figure  2  XRD patterns of the samples including the CdS-NW, CdS-NS, Au25/CdS-NW and Au25/CdS-NS

    Figure  3  ((a), (d)) STEM images, ((b), (e)) the Au particle size distribution, and ((c), (f)) the HRTEM images and the corresponding Fourier-transform diffraction patterns of Au of the ((a)–(c)) Au25/CdS-NS and ((d)–(f)) Au25/CdS-NW

    Figure  4  Cd 3d, S 2p and Au 4f XPS data of the samples including the CdS-NW, CdS-NS, Au25/CdS-NW and Au25/CdS-NS

    Figure  5  Specific reaction rate of benzyl alcohol, and the formation rate of H2 and benzaldehyde on the (a) CdS-NW, CdS-NS and (b) Au25/CdS-NW, Au25/CdS-NS with and without light illumination, (c) selectivity for benzaldehyde formation on the CdS-NW, CdS-NS, Au25/CdS-NW and Au25/CdS-NS

    Figure  6  UV-vis absorption spectra of the CdS and Au25/CdS samples as indicated

    Figure  7  Photocatalytic dehydrogenation of BzOH to benzaldehyde by “PhCH2O• Route” and “•CH(Ph)-OH Route”

  • [1] LUONG G K T, KU Y. Selective oxidation of benzyl alcohol in the aqueous phase by TiO2-based photocatalysts: A review[J]. Chem Eng Technol,2021,44:2178−2190. doi: 10.1002/ceat.202100321
    [2] PARRINO F, BELLARDITA M, GARCÍA-LÓPEZ E I, MARCÌ G, LODDO V, PALMISANO L. Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects[J]. ACS Catal,2018,8:11191−11225. doi: 10.1021/acscatal.8b03093
    [3] TAN J, ZHANG W, LV Y H, XIA A L. Facile preparation of Mn-doped CeO2 Submicrorods by composite-hydroxide-salt-mediated approach and their magnetic property[J]. Mater Res,2013,16:689−694. doi: 10.1590/S1516-14392013005000040
    [4] LI D, HANEDA H, OHASHI N, SAITO N, HISHITA S. Morphological reform of ZnO particles induced by coupling with MOx (M=V, W, Ce) and the effects on photocatalytic activity[J]. Thin Solid Films,2005,486:20−23. doi: 10.1016/j.tsf.2004.11.237
    [5] LI R, TAO X, CHEN R, FAN F, LI C. Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets[J]. Chem Eur J,2015,21:14337−14341. doi: 10.1002/chem.201502562
    [6] LI R, ZHANG F, WANG D, YANG J, LI M, ZHU J, ZHOU X, HAN H, LI C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nat Commun,2013,4:1432−1439. doi: 10.1038/ncomms2401
    [7] ZHU J, FAN F, CHEN R, AN H, FENG Z, LI C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst[J]. Angew Chem Int Ed Eng,2015,54:9111−9114. doi: 10.1002/anie.201504135
    [8] ZHU J, PANG S, DITTRICH T, GAO Y, NIE W, CUI J, CHEN R, AN H, FAN F, LI C. Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles[J]. Nano Lett,2017,17:6735−6741. doi: 10.1021/acs.nanolett.7b02799
    [9] ZHANG L, CHEN R, TU Y, GONG X, CAO X, XU Q, LI Y, YE B, YE Y, ZHU J. Revealing the crystal facet effect of ceria in Pd/CeO2 catalysts toward the selective oxidation of benzyl alcohol[J]. ACS Catal,2023,13:2202−2213. doi: 10.1021/acscatal.2c04252
    [10] MU L, ZHAO Y, LI A, WANG S, WANG Z, YANG J, WANG Y, LIU T, CHEN R, ZHU J, FAN F, LI R, LI C. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J]. Energy Environ. Sci.,2016,9:2463−2469. doi: 10.1039/C6EE00526H
    [11] TAN Y, ZHANG Z, GUO F, GUO R, BAI H, ZHANG B, LI X, YANG Q, LIU X. Effect of morphology transformation on photocatalytic performance of CdS crystal[J]. J Mater Sci: Mater Electron,2020,31:20315−20324. doi: 10.1007/s10854-020-04551-9
    [12] SONG S, QU J, HAN P, HULSEY M J, ZHANG G, WANG Y, WANG S, CHEN D, LU J, YAN N. Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets[J]. Nat Commun,2020,11:4899−4909. doi: 10.1038/s41467-020-18532-3
    [13] CHAI Z, ZENG T T, LI Q, LU L Q, XIAO W J, XU D. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst[J]. J Am Chem Soc,2016,138:10128−10131. doi: 10.1021/jacs.6b06860
    [14] ZHANG L, JIANG D, IRFAN R M, TANG S, CHEN X, DU P. Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution[J]. J Energy Chem,2019,30:71−77. doi: 10.1016/j.jechem.2018.03.014
    [15] ZHANG S, CHEN G, ZHU Z, WANG Y, WANG L, MENG S, ZHENG X, FU X, ZHANG F, HUANG W, CHEN S. Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization[J]. J Catal,2021,402:72−82. doi: 10.1016/j.jcat.2021.08.028
    [16] LEE S G, KANG M J, PARK M, KIM K J, LEE H, KIM H S. Selective photocatalytic conversion of benzyl alcohol to benzaldehyde or deoxybenzoin over ion-exchanged CdS[J]. Appl Catal B: Environ,2022,304:120967−120979. doi: 10.1016/j.apcatb.2021.120967
    [17] ZHENG Z, WANG T, HAN F, YANG Q, LI B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light[J]. J Colloid Interface Sci,2022,606:47−56. doi: 10.1016/j.jcis.2021.07.150
    [18] SUN Z, ZHENG H, LI J, DU P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts[J]. Energy Environ Sci,2015,8:2668−2676. doi: 10.1039/C5EE01310K
    [19] JIANG D, SUN Z, JIA H, LU D, DU P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water[J]. J Mater Chem A,2016,4:675−683. doi: 10.1039/C5TA07420G
    [20] LI C, YUAN J, HAN B, SHANGGUAN W. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light[J]. Int J Hydrog Energy,2011,36:4271−4279. doi: 10.1016/j.ijhydene.2011.01.022
    [21] VAQUERO F, NAVARRO R M, FIERRO J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method[J]. Appl Catal B: Environ,2017,203:753−767. doi: 10.1016/j.apcatb.2016.10.073
    [22] KONG X, YU F, ZHANG H, LV F, WANG Y, YIN L, HUANG J, FENG Q. Synthesis and study of morphology regulation, formation mechanism and photocatalytic performance of CdS[J]. Appl Surf Sci,2022,576:151817−151824. doi: 10.1016/j.apsusc.2021.151817
    [23] IQBAL S, PAN Z, ZHOU K. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures[J]. Nanoscale,2017,9:6638−6642. doi: 10.1039/C7NR01705G
    [24] JANG J S, JOSHI U A, LEE J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production[J]. J Phys Chem C,2007,111:13280−13287. doi: 10.1021/jp072683b
    [25] TAN Y, LIU X Y, LI L, KANG L, WANG A, ZHANG T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene[J]. J Catal,2018,364:174−182. doi: 10.1016/j.jcat.2018.05.007
    [26] WANG Z, HISATOMI T, LI R, SAYAMA K, LIU G, DOMEN K, LI C, WANG L. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production[J]. Joule,2021,5:344−359. doi: 10.1016/j.joule.2021.01.001
    [27] CHAI M Q, TAN Y, PEI G X, LI L, ZHANG L, LIU X Y, WANG A, ZHANG T. Crystal plane effect of ZnO on the catalytic activity of gold nanoparticles for the acetylene hydrogenation reaction[J]. J Phys Chem C,2017,121:19727−19734. doi: 10.1021/acs.jpcc.7b04022
    [28] CHEN J, FANG W, ZHANG Q, DENG W, WANG Y. A comparative study of size effects in the Au-catalyzed oxidative and non-oxidative dehydrogenation of benzyl alcohol[J]. Chem Asian J,2014,9:2187−2196. doi: 10.1002/asia.201402238
    [29] JIANG D, CHEN X, ZHANG Z, ZHANG L, WANG Y, SUN Z, IRFAN R M, DU P. Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium sulfide nanorods decorated with small cobalt nanoparticles under visible light[J]. J Catal,2018,357:147−153. doi: 10.1016/j.jcat.2017.10.019
    [30] MCCLELLAND K P, WEISS E A. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde or C–C coupled products by visible-light-absorbing quantum dots [J]. ACS Appl Energ Mater, 2018, 2: 92-96.
    [31] HAO H, ZHANG L, WANG W, QIAO S, LIU X. Photocatalytic hydrogen evolution coupled with efficient selective benzaldehyde production from benzyl alcohol aqueous solution over ZnS-NixSy composites[J]. ACS Sustainable Chem Eng,2019,7:10501−10508. doi: 10.1021/acssuschemeng.9b01017
    [32] ZHANG Z, YATES J T JR. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces[J]. Chem Rev,2012,112:5520−5551. doi: 10.1021/cr3000626
  • 2023-F004 Supporting Information.docx
  • 加载中
图(8)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  305
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-03-24
  • 录用日期:  2023-03-28
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回