[1] |
LUONG G K T and KU Y. Selective Oxidation of Benzyl Alcohol in the Aqueous Phase by TiO2-Based Photocatalysts: A Review[J]. Chem. Eng. Technol.,2021,44:2178−2190. doi: 10.1002/ceat.202100321
|
[2] |
PARRINO F, BELLARDITA M, GARCÍA-LÓPEZ E I, MARCÌ G, LODDO V, PALMISANO L. Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects[J]. ACS Catal.,2018,8:11191−11225. doi: 10.1021/acscatal.8b03093
|
[3] |
TAN J, ZHANG W, LV Y H, XIA A L. Facile preparation of Mn-doped CeO2 Submicrorods by composite-hydroxide-salt-mediated approach and their magnetic property[J]. Mater. Res.,2013,16:689−694. doi: 10.1590/S1516-14392013005000040
|
[4] |
LI D, HANEDA H, OHASHI N, SAITO N, HISHITA S. Morphological reform of ZnO particles induced by coupling with MOx (M=V, W, Ce) and the effects on photocatalytic activity[J]. Thin Solid Films,2005,486:20−23. doi: 10.1016/j.tsf.2004.11.237
|
[5] |
LI R, TAO X, CHEN R, FAN F, LI C. Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets[J]. Chem. Eur. J.,2015,21:14337−14341. doi: 10.1002/chem.201502562
|
[6] |
LI R, ZHANG F, WANG D, YANG J, LI M, ZHU J, ZHOU X, HAN H, LI C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nat. Commun.,2013,4:1432−1439. doi: 10.1038/ncomms2401
|
[7] |
ZHU J, FAN F, CHEN R, AN H, FENG Z, LI C. Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst[J]. Angew. Chem. Int. Ed. Engl.,2015,54:9111−9114. doi: 10.1002/anie.201504135
|
[8] |
ZHU J, PANG S, DITTRICH T, GAO Y, NIE W, CUI J, CHEN R, AN H, FAN F, LI C. Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles[J]. Nano. Lett.,2017,17:6735−6741. doi: 10.1021/acs.nanolett.7b02799
|
[9] |
ZHANG L, CHEN R, TU Y, GONG X, CAO X, XU Q, LI Y, YE B, YE Y, ZHU J. Revealing the Crystal Facet Effect of Ceria in Pd/CeO2 Catalysts toward the Selective Oxidation of Benzyl Alcohol[J]. ACS Catal.,2023,13:2202−2213. doi: 10.1021/acscatal.2c04252
|
[10] |
MU L, ZHAO Y, LI A, WANG S, WANG Z, YANG J, WANG Y, LIU T, CHEN R, ZHU J, FAN F, LI R, LI C. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J]. Energy Environ. Sci.,2016,9:2463−2469. doi: 10.1039/C6EE00526H
|
[11] |
TAN Y, ZHANG Z, GUO F, GUO R, BAI H, ZHANG B, LI X, YANG Q, LIU X. Effect of morphology transformation on photocatalytic performance of CdS crystal[J]. J. Mater. Sci. :Mater. Electron.,2020,31:20315−20324. doi: 10.1007/s10854-020-04551-9
|
[12] |
SONG S, QU J, HAN P, HULSEY M J, ZHANG G, WANG Y, WANG S, CHEN D, LU J, YAN N. Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets[J]. Nat. Commun.,2020,11:4899−4909. doi: 10.1038/s41467-020-18532-3
|
[13] |
CHAI Z, ZENG T T, LI Q, LU L Q, XIAO W J, XU D. Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst[J]. J. Am. Chem. Soc.,2016,138:10128−10131. doi: 10.1021/jacs.6b06860
|
[14] |
ZHANG L, JIANG D, IRFAN R M, TANG S, CHEN X, DU P. Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution[J]. J. Energy Chem.,2019,30:71−77. doi: 10.1016/j.jechem.2018.03.014
|
[15] |
ZHANG S, CHEN G, ZHU Z, WANG Y, WANG L, MENG S, ZHENG X, FU X, ZHANG F, HUANG W, CHEN S. Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization[J]. J. Catal.,2021,402:72−82. doi: 10.1016/j.jcat.2021.08.028
|
[16] |
LEE S G, KANG M J, PARK M, KIM K J, LEE H, KIM H S. Selective photocatalytic conversion of benzyl alcohol to benzaldehyde or deoxybenzoin over ion-exchanged CdS[J]. Appl. Catal. B-Environ.,2022,304:120967−120979. doi: 10.1016/j.apcatb.2021.120967
|
[17] |
ZHENG Z, WANG T, HAN F, YANG Q, LI B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light[J]. J. Colloid Interface Sci.,2022,606:47−56. doi: 10.1016/j.jcis.2021.07.150
|
[18] |
SUN Z, ZHENG H, LI J, DU P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts[J]. Energy Environ. Sci.,2015,8:2668−2676. doi: 10.1039/C5EE01310K
|
[19] |
JIANG D, SUN Z, JIA H, LU D, DU P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water[J]. J. Mater. Chem. A,2016,4:675−683. doi: 10.1039/C5TA07420G
|
[20] |
LI C, YUAN J, HAN B, SHANGGUAN W. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light[J]. Int. J. Hydrog. Energy,2011,36:4271−4279. doi: 10.1016/j.ijhydene.2011.01.022
|
[21] |
VAQUERO F, NAVARRO R M, FIERRO J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method[J]. Appl. Catal. B-Environ.,2017,203:753−767. doi: 10.1016/j.apcatb.2016.10.073
|
[22] |
KONG X, YU F, ZHANG H, LV F, WANG Y, YIN L, HUANG J, FENG Q. Synthesis and study of morphology regulation, formation mechanism and photocatalytic performance of CdS[J]. Appl. Surf. Sci.,2022,576:151817−151824. doi: 10.1016/j.apsusc.2021.151817
|
[23] |
IQBAL S, PAN Z, ZHOU K. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures[J]. Nanoscale,2017,9:6638−6642. doi: 10.1039/C7NR01705G
|
[24] |
JANG J S, JOSHI U A, LEE J S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production[J]. J. Phys. Chem. C,2007,111:13280−13287. doi: 10.1021/jp072683b
|
[25] |
TAN Y, LIU X Y, LI L, KANG L, WANG A, ZHANG T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene[J]. J. Catal.,2018,364:174−182. doi: 10.1016/j.jcat.2018.05.007
|
[26] |
WANG Z, HISATOMI T, LI R, SAYAMA K, LIU G, DOMEN K, LI C, WANG L. Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production[J]. Joule,2021,5:344−359. doi: 10.1016/j.joule.2021.01.001
|
[27] |
CHAI M Q, TAN Y, PEI G X, LI L, ZHANG L, LIU X Y, WANG A, ZHANG T. Crystal Plane Effect of ZnO on the Catalytic Activity of Gold Nanoparticles for the Acetylene Hydrogenation Reaction[J]. J. Phys. Chem. C,2017,121:19727−19734. doi: 10.1021/acs.jpcc.7b04022
|
[28] |
CHEN J, FANG W, ZHANG Q, DENG W, WANG Y. A comparative study of size effects in the Au-catalyzed oxidative and non-oxidative dehydrogenation of benzyl alcohol[J]. Chem. -Asian J.,2014,9:2187−2196. doi: 10.1002/asia.201402238
|
[29] |
JIANG D, CHEN X, ZHANG Z, ZHANG L, WANG Y, SUN Z, IRFAN R M, DU P. Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium sulfide nanorods decorated with small cobalt nanoparticles under visible light[J]. J. Catal.,2018,357:147−153. doi: 10.1016/j.jcat.2017.10.019
|
[30] |
MCCLELLAND K P, WEISS E A, Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde or C–C Coupled Products by Visible-Light-Absorbing Quantum Dots [J]. ACS Appl. Energ. Mater. , 2018, 2: 92-96.
|
[31] |
HAO H, ZHANG L, WANG W, QIAO S, LIU X. Photocatalytic Hydrogen Evolution Coupled with Efficient Selective Benzaldehyde Production from Benzyl Alcohol Aqueous Solution over ZnS-NixSy Composites[J]. ACS Sustain. Chem. Eng.,2019,7:10501−10508. doi: 10.1021/acssuschemeng.9b01017
|
[32] |
ZHANG Z, YATES J T JR. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces[J]. Chem. Rev.,2012,112:5520−5551. doi: 10.1021/cr3000626
|