留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag + 改性NaY分子筛的制备及其吸附脱氮性能研究

富添 洪新 田宇 孙潇镝 王聚财 唐克 栾秀阳

富添, 洪新, 田宇, 孙潇镝, 王聚财, 唐克, 栾秀阳. Ag + 改性NaY分子筛的制备及其吸附脱氮性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60386-X
引用本文: 富添, 洪新, 田宇, 孙潇镝, 王聚财, 唐克, 栾秀阳. Ag + 改性NaY分子筛的制备及其吸附脱氮性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60386-X
FU Tian, HONG Xin, TIAN Yu, SUN Xiao-di, WANG Ju-cai, TANG Ke, LUAN Xiu-yang. Preparation of Ag + modified NaY molecular sieve and their adsorption and denitrogenation properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60386-X
Citation: FU Tian, HONG Xin, TIAN Yu, SUN Xiao-di, WANG Ju-cai, TANG Ke, LUAN Xiu-yang. Preparation of Ag + modified NaY molecular sieve and their adsorption and denitrogenation properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60386-X

Ag + 改性NaY分子筛的制备及其吸附脱氮性能研究

doi: 10.1016/S1872-5813(23)60386-X
基金项目: 2023年度省教育厅高等学校基本科研项目(面上项目)、2023年国家级大学生创新创业训练计划项目(202310154014)
详细信息
    通讯作者:

    Tel:13940616508 E-mail:hongxin12@sohu.com

  • 中图分类号: X511

Preparation of Ag + modified NaY molecular sieve and their adsorption and denitrogenation properties

Funds: The project was supported by 2023 Provincial Department of Education Basic Research Projects for Higher Education Institutions (General Projects) and 2023 National College Student Innovation and Entrepreneurship Training Program Project (202310154014)
  • 摘要: 采用Ag + 改性NaY分子筛成功制备了AgY分子筛,利用XRD射线衍射、IR、N2吸附脱附对NaY和AgY分子筛进行了表征,并用于吸附脱除模拟燃料中吡啶、苯胺、喹啉碱性氮化物,AgY分子筛的吸附能力明显优于NaY分子筛。考察了吸附温度、吸附时间对AgY分子筛吸附三种氮化物的影响,实验结果表明吸附能力均为:苯胺>喹啉>吡啶,为了进一步研究其吸附机理,采用Materials Studio软件建立了AgY分子筛12T团簇模型并在303K、323K、343K下模拟三种氮化物分子在AgY分子筛上的吸附,计算了吸附能、活性中心与吡啶、苯胺、喹啉分子的距离、前线轨道、等密度分布、径向分布函数等相关参数,计算结果也表明AgY分子筛对苯胺的吸附优于喹啉,优于吡啶,与实验结果一致,且吸附以化学吸附为主,AgY分子筛S位和W位为主要吸附位。吸附等温线研究结果表明,AgY分子筛对吡啶的吸附符合Langmuir-Freundlich混合吸附模型,对苯胺、喹啉的吸附符合Freundlich吸附模型。吸附动力学和吸附热力学结果表明,AgY分子筛对吡啶的吸附符合准二级动力学模型,对苯胺、喹啉的吸附符合准一级动力学模型,吸附是自发的熵增过程。
  • 图  1  AgY分子筛12T团簇模型和优化后的氮化物3D模型结构

    Figure  1  AgY molecular sieve 12T cluster model and optimized nitride 3D model structure

    图  2  AgY分子筛和NaY分子筛的XRD图谱

    Figure  2  XRD patterns of AgY and NaY molecular sieves

    图  3  AgY和NaY分子筛的红外光谱图谱

    Figure  3  Infrared spectra of AgY and NaY molecular sieves

    图  4  AgY分子筛和NaY分子筛的N2吸附-脱附图谱

    Figure  4  N2 adsorption-desorption patterns of AgY and NaY molecular sieves

    图  5  吸附温度对AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的影响

    Figure  5  Effect of adsorption temperature on the adsorption and removal of pyridine, aniline, and quinoline from simulated fuel by AgY molecular sieve

    图  6  AgY分子筛12T团簇吸附苯胺、吡啶、喹啉的构型示意图

    Figure  6  Configuration diagram of AgY molecular sieve 12T cluster adsorption for aniline, pyridine, and quinoline

    (The numbers in the figure are the distances between the N atoms in the nitride and the Ag atoms in the AgY molecular sieve; units are nm)

    图  7  吡啶、苯胺、喹啉分子的前线轨道图

    Figure  7  Frontline orbitals of pyridine, aniline, and quinoline molecules

    图  8  不同温度下AgY分子筛吸附脱吡啶、苯胺、喹啉的等密度分布图

    Figure  8  Isodensity Distribution Diagram of Adsorbed Depyridine, Aniline and Quinoline on AgY Molecular Sieve at Different Temperatures

    图  9  吸附时间对AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的影响

    Figure  9  Effect of adsorption time on the adsorption and removal of pyridine, aniline, and quinoline from simulated fuel by AgY molecular sieve

    图  10  吡啶、苯胺、喹啉与AgY分子筛中Ag原子的径向分布函数

    Figure  10  Radial distribution function of Ag Atoms in Pyridine, Aniline, Quinoline and AgY molecular sieve

    图  11  AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的吸附等温线拟合

    Figure  11  Adsorption Contour line#Temperature and related subjects fitting of pyridine, aniline and quinoline in simulated fuel by AgY molecular sieve

    图  12  AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的动力学拟合曲线

    Figure  12  Kinetic fitting curve of adsorption and removal of pyridine, aniline, and quinoline from simulated fuel using AgY molecular sieve

    表  1  NaY和AgY分子筛吸附脱除模拟燃料中吡啶的脱氮性能

    Table  1  Denitrification performance of NaY and AgY molecular sieves for adsorption and removal of pyridine in simulated fuels

    ProjectNaYAgY
    Adsorption capacity(mg·g−151.2662.60
    removal rate(%)57.6970.46
    下载: 导出CSV

    表  2  AgY分子筛团簇吸附苯胺、吡啶、喹啉的吸附能

    Table  2  Adsorption Energy of AgY Molecular Sieve Clusters for Aniline, Pyridine, and Quinoline

    ProjectAdsorption complex
    energy / eV
    Adsorbent energy / eVAdsorbed molecule
    energy / eV
    Adsorption energy / eV
    AgY adsorbed Pyridine−172864.913−166114.168−6749.4881.257
    AgY adsorbed aniline−310406.903−302585.559−7818.5462.798
    AgY adsorbed quinoline−177043.348−166113.821−10927.2362.291
    下载: 导出CSV

    表  3  苯胺、吡啶、喹啉与AgY分子筛活性中心的距离d(Ag-N)和前线轨道能量值

    Table  3  Distance d (Ag-N) and Frontline Orbital Energy Values of Aniline, Pyridine, Quinoline and AgY Molecular Sieve Active Centers

    ProjectHOMO /eVLUMO /eV△E /eVd(Ag-N)/ nm
    AgY adsorbed Pyridine−5.960−2.5753.3853.410
    AgY adsorbed aniline−4.569−1.7102.8592.328
    AgY adsorbed quinoline−7.198−3.1354.0632.777
    下载: 导出CSV

    表  4  三种吸附模型拟合AgY分子筛吸附模吡啶、苯胺、喹啉的相关参数值

    Table  4  Three adsorption models fitting the relevant parameter values of AgY molecular sieve adsorption models for pyridine, aniline, and quinoline

    TemperatureLangmuirFreundlichLangmuir-Freundlich
    qmKL × 105R2nKFR2qmKa × 105nR2
    Pyridine
    303 K142.910.7880.9260.5080.6390.934291.61.7690.6580.986
    323 K185.68.3020.9250.5720.6070.935600.40.5760.6520.980
    343 K171.28.9550.9150.5590.2530.926592.30.4970.6340.982
    Aniline
    293 K650.57.0550.9850.8110.1680.991305241.2760.972
    313 K733.75.9290.9830.8280.1440.989320201.1720.970
    333 K637.56.9370.9830.8110.1440.990320201.1760.974
    Quinoline
    303 K27701.3020.9860.9230.0650.987265261.4410.947
    323 K12233.2800.9890.8850.0920.992250301.5020.956
    343 K10923.7900.9890.8770.0990.99226928.31.4450.965
    下载: 导出CSV

    表  5  热力学模型拟合的相关参数

    Table  5  Relevant parameters for thermodynamic model fitting

    ProjectΔG(KJ/mol)∆S(KJ/mol·K)∆H(KJ/mol)
    Pyridine
    303K−28.760.1828.39
    323K−33.40
    343K−36.04
    Aniline
    303K−8.4370.0558.228
    323K−9.537
    343K−10.637
    Quinoline
    293K−3.2730.0202.587
    313K−3.673
    333K−4.073
    (ΔG is Gibbs free energy, ΔH is enthalpy change, ΔS is entropy change)
    下载: 导出CSV

    表  6  准一级和准二级动力学模型拟合相关参数

    Table  6  Parameters related to fitting of Quasi-first-order and Quasi-second-order kinetic models

    ProjectQuasi-first-order kinetic equationQuasi-second-order kinetic equation
    QeK1R2QeK2R2
    Pyridine30.1620.1970.98632.2520.0130.993
    Aniline79.0030.4730.99782.1370.0220.994
    Quinoline63.0122.9360.97564.2340.6270.969
    下载: 导出CSV
  • [1] 梁文杰, 阙国和, 刘晨光, 等. 石油化学(第二版)[M]. 东营: 中国石油大学出版社, 2011: 45-50.

    LIANG Wenjie, QUE Guohe, LIU Chenguang, et al. Petrochemistry(2nd Edition)[M]. Dongying: China University of Petroleum Press, 2011: 45-50.
    [2] 郭凤洁, 帅秋艳, 史晨曦. NaY型分子筛的制备及其对微量铁离子的吸附性能研究[J]. 中国高新科技,2019,(20):29−31. doi: 10.13535/j.cnki.10-1507/n.2019.20.06

    GUO Fengjie, SHUAI Qiuyan, SHI Chenxi. Preparation of NaY-type molecular sieve and its adsorption performance on trace iron ions[J]. China High Science and Technology,2019,(20):29−31. doi: 10.13535/j.cnki.10-1507/n.2019.20.06
    [3] 黄坚, 李先锋, 谢军, 等. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053

    HUANG Jian, LI Xianxian, XIE Jun, et al. Performance improvement of NaY molecular sieve modified by ion exchange method for adsorption of sulfur-containing VOCs[J]. Chinese Journal of Environmental Engineering,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053
    [4] Seyforth J. A literature review of the computational methods used to investigate molecular machines[R]. 2016.
    [5] Dauber-Osguthorpe P, Roberts V A, Osguthorpe D J, et al. Structure and energ getics of ligand binding to proteins: Escherichia coli di hydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins:Structure, Function, and Bioinformatics,1988,4(1):31−47. doi: 10.1002/prot.340040106
    [6] 富添, 洪新, 矫宝庆, 等. 杂原子介孔分子筛Ba-MCM-41的制备及其吸附脱氮性能[J]. 石油炼制与化工,2022,53(5):28−35.

    FU Tian, HONG Xin, JIAO Baoqing, et al. Preparation of Heteroatom Mesoporous Zeolite Ba-MCM-41 and Its Adsorption and Nitrogen Removal Performance[J]. Petroleum Processing and Petrochemicals,2022,53(5):28−35.
    [7] 中国石油化工股份有限公司科技开发部. 石油产品行业标准汇编[M]. 北京: 中国石化出版社, 2005: 402-405.

    Science and Technology Development Department, China Petroleum & Chemical Corporation. Compilation of petroleum products industry standards[M]. Beijing: China Petrochemical Press, 2005: 402-405.
    [8] 黄乐, 郑健, 李强, 等. 正己烷在不同硅铝比HZSM-5分子筛上吸附的分子模拟研究[J]. 石油炼制与化工,2022,53(2):84−92. doi: 10.3969/j.issn.1005-2399.2022.02.014

    HUANG Le, ZHENG Jian, LI Qiang, et al. Molecular simulation study on adsorption of n-hexane on HZSM-5 zeolite with different silicon-aluminum ratios[J]. Petroleum Processing and Petrochemicals,2022,53(2):84−92. doi: 10.3969/j.issn.1005-2399.2022.02.014
    [9] 解国应, 宫玉洁, 周东旭, 等. 改性Y型分子筛吸附脱除模拟油品中氯辛烷[J]. 石油学报(石油加工),2021,37(3):619−625.

    XIE Guoying, GONG Yujie, ZHOU Dongxu, et al. Adsorption and removal of chlorooctane from simulated oil by modified Y-type molecular sieve[J]. Acta Petrolei Sinica(Petroleum Processing),2021,37(3):619−625.
    [10] 何杰, 王宾, 司圣元, 等. AgY分子筛与甲烷中有机硫化物相互作用研究[J]. 安徽理工大学学报(自然科学版),2012,32(4):1−5.

    HE Jie, WANG Bin, SI Shengyuan, et al. Interaction between AgY molecular sieve and organic sulfides in methane[J]. Journal of Anhui University of Science and Technology (Natural Science Edition),2012,32(4):1−5.
    [11] 洪新, 唐克. Cr3 + 改性NaY分子筛的吸附脱氮性能[J]. 燃料化学学报,2016,44(2):251−256.

    HONG Xin, TUN Ke. Adsorption and denitrification performance of Cr3 + modified NaY molecular sieve[J]. Journal of Fuel Chemistry and Technology,2016,44(2):251−256.
    [12] 洪新, 唐克. NaY分子筛的改性及吸附脱氮性能[J]. 燃料化学学报,2015,43(2):214−220.

    HONG Xin, TUN Ke. Modification and adsorption and denitrification performance of NaY molecular sieve[J]. Journal of Fuel Chemistry and Technology,2015,43(2):214−220.
    [13] 徐如人, 庞文琴, 于吉红. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.

    Xu Ruren, Pang Wenqin, Yu Jihong Molecular Sieves and Porous Material Chemistry [M] Beijing: Science Press, 2004.
    [14] 刘飞. NaY、MCM-41分子筛改性及其吸附脱除燃油中有机硫化物的性能[D]. 天津大学, 2017.

    LIU Fei. Modification of NaY, MCM-41 molecular sieve and their adsorption and removal of organic sulfides from fuel oil[D]. Tianjin University, 2017.
    [15] 王福帅, 李会鹏, 赵华, 等. NaY/β复合分子筛改性及对模拟柴油中氮化物的吸附性能[J]. 石油炼制与化工, 2012, 43(11): 59-62.

    Wang Fushai, Li Huipeng, Zhao Hua, etc NaY/ β Modification of composite molecular sieves and their adsorption performance for nitrogen compounds in simulated diesel fuel [J] Petroleum Refining and Chemical Industry, 2012, 43 (11): 59-62.
    [16] 洪新, 李云赫, 赵永华等. Cr3 + 、Ni2 + 双离子改性NaY分子筛的吸附脱氮性能[J]. 石油炼制与化工, 2018, 49(02): 18-22.

    Hong Xin, Li Yunhe, Zhao Yonghua, et al The adsorption and denitrification performance of Cr3 + , Ni2 + double ion modified NaY molecular sieve [J] Petroleum Refining and Chemical Industry, 2018, 49 (02): 18-22.
    [17] 石鑫, 姜云瑛, 王洪博, 等. 4种吡嗪类缓蚀剂及其在Cu(111)面吸附行为的密度泛函理论研究[J]. 化工学报,2017,68(8):3211−3217.

    SHI Xin, JIANG Yunying, WANG Hongbo, et al. Density functional theory study on adsorption behavior of four pyrazine corrosion inhibitors and their adsorption behavior on Cu(111) surface[J]. CIESC Journal,2017,68(8):3211−3217.
    [18] 福井谦一. 化学反应与电子轨道[M]. 北京: 科学出版社, 1985, 24-25.

    Kenichi Fukui. Chemical reaction and electron orbital[M]. Beijing: Science Press, 1985, 24-25.
    [19] 张国. 有机分子在分子筛中的吸附和扩散过程的计算机模拟[D]. 吉林大学, 2008.

    ZHANG Guo. Computer simulation of adsorption and diffusion process of organic molecules in molecular sieve[D]. Jilin University, 2008.
    [20] JIRAPONGPHAN S S, WARZYWODA J, BUDIL D E, et al. Simulation of benzeneadsorption in zeolite HY using supercage-based docking[J]. Microporous and Mesoporous Materials,2006,94(1-3):358−363. doi: 10.1016/j.micromeso.2006.04.011
    [21] ZHENG H, ZHAO L, YANG Q, et al. Influence of Framework Protons on the Adsorption Sites of the Benzene/HY System[J]. Industrial & Engineering Chemistry Research,2014,53(35):13610−13617.
    [22] DANG S, ZHAO L, YANG Q, et al. Competitive Adsorption Mechanism of Thiophene with Benzene in FAU Zeolite: The Role of Displacement[J]. Chemical Engineering Journal,2017,328:172−185. doi: 10.1016/j.cej.2017.07.011
    [23] GHOUFI A, GABEROVA L, ROUQUEROL J, et al. Adsorption of CO2, CH4 and theirbinary mixture in Faujasite NaY: A combination of molecular simulations withgravimetry-manometry and microcalorimetry measurements[J]. Microporous & Mesoporous Materials,2009,119(1-3):117−128.
    [24] 陈丹. 分子筛限域孔道内扩散行为对产物选择性影响的分子动力学研究[D]. 武汉工程大学, 2022.

    CHEN Dan. Molecular dynamics study on the influence of diffusion behavior in molecular sieve confined pores on product selectivity[D]. Wuhan Institute of Technology, 2022.
    [25] Liu Y B, Li Y Z, Ding X. Adsorption Simulation of Basic Nitrogen Compounds in ZSM-5 and USY Zeolites by Grand Canonical Monte Carlo Method[J]. Advanced Materials Research,2015,1096(1):189−193.
    [26] 雪霈. 硫化物与烯烃在Y型分子筛中竞争吸附和竞争扩散的分子模拟研究[D]. 中国石油大学(北京), 2021.

    Xue Pei. Molecular simulation study on competitive adsorption and diffusion of sulfides and olefins in Y-type molecular sieves [D]. China University of Petroleum (Beijing), 2021.
    [27] Dehghani M, Asghari M, Ismail A F. Amir H M. Molecular dynamics and Monte Carlo simulation of the structural properties, diffusion and adsorption of poly (amide-6-b-ethylene oxide)/Faujasite mixed matrix membranes[J]. Journal of Molecular Liquids,2017,242(6):404−415.
    [28] 肖永厚, 周梦雪, 白腾飞, 等. 丙烯在X型分子筛上吸附热力学的Monte Carlo模拟[J]. 石油化工,2018,47(5):420−425. doi: 10.3969/j.issn.1000-8144.2018.05.004

    XIAO Yonghou, ZHOU Mengxue, BAI Tengfei, et al. Monte Carlo simulation of propylene adsorption thermodynamics on X-type zeolite[J]. Petrochemical Technology,2018,47(5):420−425. doi: 10.3969/j.issn.1000-8144.2018.05.004
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  4
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-09-12
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-12

目录

    /

    返回文章
    返回