留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化

张鸿科 汪炜琛 向治宇 周方圆 朱万斌 王洪亮

张鸿科, 汪炜琛, 向治宇, 周方圆, 朱万斌, 王洪亮. Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化[J]. 燃料化学学报(中英文), 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1
引用本文: 张鸿科, 汪炜琛, 向治宇, 周方圆, 朱万斌, 王洪亮. Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化[J]. 燃料化学学报(中英文), 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1
ZHANG Hongke, WANG Weichen, XIANG Zhiyu, ZHOU Fangyuan, ZHU Wanbin, WANG Hongliang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1
Citation: ZHANG Hongke, WANG Weichen, XIANG Zhiyu, ZHOU Fangyuan, ZHU Wanbin, WANG Hongliang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1

Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化

doi: 10.1016/S1872-5813(23)60387-1
基金项目: 国家重点研发计划(2018YFB1501500),中国农业大学基金2115人才培养计划(1011-00109018)和北京市现代农业产业技术体系创新团队(BAIC08-2022)资助
详细信息
    通讯作者:

    Tel: 18518958285,E-mail: hlwang@cau.edu.cn

  • 中图分类号: TK6

Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives

Funds: The project was supported by the National Key Research and Development Program (2018YFB1501500), the China Agricultural University Foundation 2115 Talent Training Program (1011-00109018), and the Beijing Modern Agricultural Industry Technology System Innovation Team BAIC08-2022.
  • 摘要: 本研究通过在SBA-15分子筛骨架内掺杂Ti物种并负载Ni纳米颗粒合成了“金属-酸”双功能催化剂(Ni/Ti-SBA-15)。Ti的掺杂不仅提高了催化剂酸性位点的数量,还促进了Ni纳米颗粒在载体上的高度分散。在绿色、温和条件下实现了香兰素到2-甲氧基-4-甲基苯酚(MMP)高效转化,目标产物选择性高达96.46%。此外,Ni/Ti-SBA-15催化剂价格低廉,制备工艺简单,这项工作为制备廉价高效催化剂提供了新的思路,有利于实现生物质衍生物的绿色、低成本升级转化。
  • FIG. 3077.  FIG. 3077.

    FIG. 3077.  FIG. 3077.

    图  1  操作流程示意图

    Figure  1  Operation flow sketch

    图  2  (a) 载体和催化剂的N2吸附-脱附曲线;(b) 载体和催化剂的孔径分布;(c) 载体和催化剂的XRD谱图;(d) 催化剂的NH3-TPD谱图

    Figure  2  (a) N2 adsorption-desorption curves of the supports and catalysts; (b) Pore size distribution of the supports and catalysts; (c) XRD spectra of the supports and catalysts; (d) NH3-TPD curves of the catalysts

    图  3  催化剂Ni/Ti7-SBA-15的TEM图像

    Figure  3  TEM images of catalyst Ni/Ti7-SBA-15

    图  4  Ni/Ti7-SBA-15催化剂在Ni 2p、O 1s和Ti 2p的 XPS谱图

    Figure  4  XPS spectra of Ni/Ti7-SBA-15 catalyst in the Ni 2p, O 1s and Ti 2p region

    图  5  (a) 载体Ti7-SBA-15和Ti掺杂量不同的催化剂的催化活性;(b) 催化剂Ni/Ti7-SBA-15在不同温度下的催化活性;(c) 催化剂Ni/Ti7-SBA-15在不同氢气压力下的催化活性;(d) 催化剂Ni/Ti7-SBA-15催化反应过程中选择性随时间的变化

    Figure  5  (a) Catalytic activity of the supports Ti7-SBA-15 and the series catalysts with different Ti doping; (b) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different temperatures; (c) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different hydrogen pressures; (d) Time profile of the catalytic reaction process of catalyst Ni/Ti7-SBA-15

    图  6  催化剂Ni/Ti-SBA-15催化香兰素加氢脱氧生成MMP的作用机理

    Figure  6  Mechanism of catalyst Ni/Ti-SBA-15 catalyzed hydrodeoxygenation of vanillin to generate MMP

    表  1  BET和ICP-OES测量

    Table  1  Texture properties and elemental analysis of the supports and catalysts

    SampleSBET/(m2·g−1)vt/(cm3·g−1)Pore size/
    nm
    w/%
    NiTi
    SBA-15970.40.492.46
    Ti7-SBA-15828.10.462.61
    Ni/SBA-15521.00.232.5710.0
    Ni/Ti7-SBA-15425.00.263.379.97.46
    下载: 导出CSV

    表  2  香兰素加氢脱氧制MMP的催化剂和Ni/Ti7-SBA-15的催化效果

    Table  2  Catalytic effects of reported catalysts for the hydrodeoxygenation of vanillin to MMP and Ni/Ti7-SBA-15

    CatalystReaction conditionsConv./%Sel./%Ref.
    Pd/ZrO2(x)ethanol, polymethylhydrosiloxane, 25 ℃, 1 h>99>99[5]
    Pd/Ru@GOmethanol, 1 MPa H2, 25 ℃, 12 h>99>99[6]
    Au/Co3O4 NRs-OVs2-propanol, 0.1 MPa N2, 240 ℃, 3 h>99>99[7]
    Co@NC-700H2O, formic acid, 180 ℃, 4 h95.7>99[9]
    Cu-Ga/HNZYmethanol, 1 MPa H2, 160 ℃, 2 h>9999[10]
    Ni/ZrPisopropanol, 0.5 MPa H2, 220 ℃, 0.5 h9585[11]
    HD-Ni/N-CMSH2O, 2 MPa H2, 130 ℃, 10 h>99>99[12]
    Ni/Nb2O5H2O, 1 MPa H2, 180 ℃, 1 h96.179.2[13]
    Ni0.5Zn1.5Al1-MMOH2O, 1 MPa H2, 130 ℃, 2 h>9956[14]
    Ni/Ti7-SBA-15H2O, 1 MPa H2, 140 ℃, 2 h>9996.46this paper
    下载: 导出CSV

    表  3  Ni/Ti-SBA-15对多种木质素衍生物的加氢脱氧催化效果

    Table  3  HDO of various substrates catalyzed by Ni/Ti-SBA-15

    EntrySubstrateProductConv./%Sel./%
    110096.46
    2100>99
    3100>99
    4100>99
    Reaction condition: 50 mg catalyst, 1 mmol substrate, 20 mL H2O, 140 ℃, 1 MPa H2, 2 h.
    下载: 导出CSV
  • [1] WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresour Technol,2019,271:449−461. doi: 10.1016/j.biortech.2018.09.072
    [2] WANG H L, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renewable Sustainable Energy Rev,2020,120:109612. doi: 10.1016/j.rser.2019.109612
    [3] QIU Z G, HE X X, LI Z Q, et al. CoZn/N-doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C3N4 for efficient hydrodeoxygenation of vanillin[J]. Catal Sci Technol,2022,12(16):5178−5188. doi: 10.1039/D2CY00642A
    [4] ZHANG L K, SHANG N Z, GAO S T, et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics[J]. ACS Catal,2020,10(15):8672−8682. doi: 10.1021/acscatal.0c00239
    [5] JIANG J Y, DING W T, ZHANG W, et al. Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature[J]. Fuel,2022,318:123529. doi: 10.1016/j.fuel.2022.123529
    [6] ARORA S, GUPTA N, SINGH V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin[J]. Green Chem,2020,22(6):2018−2027. doi: 10.1039/D0GC00052C
    [7] LIAO Q L, SHI M, ZHANG Q X, et al. Gold catalyst anchored to pre-reduced Co3O4 nanorods for the hydrodeoxygenation of vanillin using alcohols as hydrogen donors[J]. ACS Appl Mater Inter,2022,14(3):3939−3948. doi: 10.1021/acsami.1c18197
    [8] 李秉硕, 冯薜萱, 吴开页, 等. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报(中英文),2023,51(3):358−366.

    LI Bingshuo, FENG Xuexuan, WU Kaiye, et al. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. J Fuel Chem Technol,2023,51(3):358−366.
    [9] YANG H H, NIE R F, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chem,2017,19(23):5714−5722. doi: 10.1039/C7GC02648J
    [10] VERMA D, INSYANI R, CAHYADI H S, et al. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals[J]. Green Chem,2018,20(14):3253−3270. doi: 10.1039/C8GC00629F
    [11] GAO J, CAO Y, LUO G, et al. High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts[J]. Chem Eng J,2022,448:137723. doi: 10.1016/j.cej.2022.137723
    [12] FAN R Y, HU Z, CHEN C, et al. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D
    [13] ZHANG Z, XU H, LI H. Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: The role of Nb2O5 crystal structures[J]. Fuel,2022,324(B):124400.
    [14] YUE X K, ZHANG L H, SUN L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Appl Catal B: Environ,2021,293:120243. doi: 10.1016/j.apcatb.2021.120243
    [15] KANG Y, RAO X R, YUAN P, et al. Al-functionalized mesoporous SBA-15 with enhanced acidity for hydroisomerization of n-octane[J]. Fuel Process Technol,2021,215:106765. doi: 10.1016/j.fuproc.2021.106765
    [16] BERUBE F, NOHAIR B, KLEITZ F, et al. Controlled postgrafting of titanium chelates for improved synthesis of Ti-SBA-15 epoxidation catalysts[J]. Chem Mater,2010,22(6):1988−2000. doi: 10.1021/cm9030667
    [17] WEN M C, SONG S N, ZHAO W N, et al. Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs[J]. Environ Sci-Nano,2021,8(12):3735−3745. doi: 10.1039/D1EN00744K
    [18] WANG X C, WANG Z Q, ZHOU L L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: the significance of defect-rich TiOx species[J]. Green Chem,2022,24(15):5822−5834. doi: 10.1039/D2GC01714H
    [19] DEVI P, DAS U, DALAI A K. Production of glycerol carbonate using a novel Ti-SBA-15 catalyst[J]. Chem Eng J,2018,346:477−488. doi: 10.1016/j.cej.2018.04.030
    [20] LEDESMA B C, ANUNZIATA O A, BELTRAMONE A R. HDN of indole over Ir-modified Ti-SBA-15[J]. Appl Catal B: Environ,2016,192:220−233. doi: 10.1016/j.apcatb.2016.03.066
    [21] WANG W C, SHENG T, CHEN S S, et al. Defect engineering of metal-organic framework for highly efficient hydrodeoxygenation of lignin derivates in water[J]. Chem Eng J,2023,453(2):139711.
    [22] SULLIVAN M M, BHAN A. Acetone hydrodeoxygenation over bifunctional metallic-acidic molybdenum carbide catalysts[J]. ACS Catal,2016,6(2):1145−1152. doi: 10.1021/acscatal.5b02656
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  53
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-08-28
  • 录用日期:  2023-09-13
  • 网络出版日期:  2023-11-10
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回