Promotion of Cu/Ce Supported Red Mud for NO Removal from Low and Medium Flue Gas
-
摘要: 赤泥是制铝工业的固体废弃物,具有一定的环境危害,但研究表明其可作为NOx选择性催化还原(SCR)催化剂的替代品。通过对赤泥酸洗处理能够改善赤泥的碱性和表面性质,提高其对NOx的转化率。本文采用对酸洗赤泥催化剂进行Cu、Ce、Cu/Ce浸渍负载,并研究了金属改性赤泥对烟气中NOx的催化转化性能。研究结果表明,Cu负载催化剂中的Cu + 与Cu2 + ,有效促进了赤泥对低温烟气(200–300 ℃)中的NO转化率,Cu的负载量达到6%时,赤泥的最高NO转化率达到了90.7%;而Ce负载催化剂中的Ce3 + 与Ce4 + ,有效促进了赤泥对中温烟气(200–400 ℃)中的NO转化率,Ce的负载量达到8%时,赤泥的最高NO转化率达到了94.0%;Cu/Ce负载催化剂表现出比单金属负载催化剂更好的低温NO转化率,最佳的负载Cu:Ce比例为1∶1,双金属负载催化剂表现出比Cu负载催化剂更好的中温(300–400 ℃)中的NO转化率,最高达到了95.5%。其原因可能是,在Cu/Ce协同作用下,Cu + 以及Cu2 + 的还原过程分别从229 ℃、302 ℃降至201 ℃以及247 ℃,同时使发生Fe2O3→FeO的还原过程的温度降低,促使ACRM-Cu1Ce1具有更强的低温氧化还原能力,同时,双金属负载使催化剂具有更高的弱酸性峰,也使催化剂的强、弱酸性峰都向低温偏移,并使负载后的赤泥具有了较高的Fe离子平均氧化态以及较高的Cu + 含量,促进了赤泥催化剂对低温NO的转化率。Abstract: Red mud is a solid waste in aluminum industry and has been proven to be an efficient alternative to NOx selective catalytic reduction (SCR) catalysts. Acid washing treatment to red mud can improve its alkalinity and surface properties, and increase the conversion rate of NOx. In this paper, Cu, Ce, and Cu/Ce was supported on acid washed red mud and NOx catalytic conversion performance on metal modified red mud catalysts was studied. The research results indicate that the Cu + and Cu2 + in the Cu-loaded catalyst effectively promoted the NO conversion of red mud to low-temperature flue gas (200−300 ℃), and the highest NO conversion of red mud reached 90.7% at a loading of 6% of Cu; while the Ce3 + and Ce4 + in the Ce-loaded catalyst promoted the NO conversion of red mud to medium-temperature flue gas (200−400 ℃), and the highest NO conversion of red mud reached 94.7% at a loading of 8% of Ce. The Ce3 + and Ce4 + in the Ce-loaded catalyst effectively promoted the NO conversion of red mud to medium-temperature flue gas (200−400 ℃), and the maximum NO conversion of red mud reached 94.0% with a Ce loading of 8%; the Cu/Ce-loaded catalyst showed a better low-temperature NO conversion than that of the single-metal-loaded catalyst, and the optimal loading ratio of Cu:Ce was 1∶1, and the bimetallic-loaded catalyst showed better low-temperature NO conversion than that of the Cu-loaded catalyst. The optimum loading Cu:Ce ratio was 1∶1, and the bimetallic-loaded catalysts showed better NO conversion at medium temperatures (300−400 ℃) than the Cu-loaded catalysts, with a maximum of 95.5%. The reason may be that, under the synergistic effect of Cu/Ce, the reduction process of Cu + as well as Cu2 + was reduced from 229 ℃ and 302 ℃ to 201 ℃ and 247 ℃, respectively, and at the same time, the temperature at which the Fe2O3→FeO reduction process occurred was lowered, which contributed to the stronger low-temperature redox ability of ACRM-Cu1Ce1, and at the same time, the bimetallic loading enabled the catalyst to have higher weak acidity peaks, which also shifted both the strong and weak acidic peaks of the catalyst to low temperature, and gave the loaded red mud a higher average oxidation state of Fe ions as well as a higher Cu + content, which promoted the conversion of the red mud catalyst to low-temperature NO.
-
Key words:
- red mud /
- scr /
- cu /
- ce /
- supporting
-
图 6 负载金属催化剂的等温吸附曲线与孔径分布(a)、(b)、(c)分别是Cu负载、Ce负载以及Cu/Ce负载催化剂的等温吸附曲线;(d)、(e)、(f)分别是对应催化剂的孔径分布
Figure 6 Isothermal adsorption curves and pore size distribution of the loaded catalysts (a), (b) and (c) are the isothermal adsorption curves of Cu loaded, Ce loaded and Cu/Ce loaded catalysts, respectively; (d), (e) and (f) are the pore size distribution of the corresponding catalysts
表 1 赤泥的组成分析
Table 1 Analysis of the composition of red mud
Sample Fe2O3 Al2O3 SiO2 TiO2 Na2O Others RM 42.0 21.3 22.5 3.7 6.9 3.6 表 2 催化剂的比表面积与孔径分布
Table 2 Surface area and pore size distribution of catalysts
Sample SBET m2·g−1 Vt cm3·g−1 Dave nm ACRM-Cu1 51 0.155 9.3 ACRM-Cu2 53 0.168 9.8 ACRM-Cu4 45 0.149 9.7 ACRM-Cu6 44 0.156 10.3 ACRM-Cu8 42 0.149 14.2 ACRM-Ce1 50 0.172 9.8 ACRM-Ce2 54 0.162 9.6 ACRM-Ce4 49 0.148 9.4 ACRM-Ce6 49 0.147 9.6 ACRM-Ce8 50 0.137 9.2 ACRM-Cu3Ce1 42 0.146 10.7 ACRM-Cu2Ce1 41 0.154 11.5 ACRM-Cu1Ce1 43 0.137 10.1 ACRM-Cu1Ce2 45 0.139 10.0 ACRM-Cu1Ce3 48 0.143 9.4 -
[1] CHEN Chan-min, CAO Yue, LIU Song-tao, et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin. J. Catal,2018,39(8):1347−1365. doi: 10.1016/S1872-2067(18)63090-6 [2] KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl. Catal. A,2007,327(2):261−269. doi: 10.1016/j.apcata.2007.05.024 [3] FAN Jie, NING Ping, SONG Zhong-xian, et al. Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation[J]. Chem. Eng. J,2018,334:855−863. doi: 10.1016/j.cej.2017.10.011 [4] Huang Li, ZENG Yi-qing, CHANG Zheng-feng, et al. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. Mol. Catal,2021,506:111565. doi: 10.1016/j.mcat.2021.111565 [5] ZHANG Kang, XU Li-ting, NIU Sheng-li, et al. Iron-manganese-magnesium mixed oxides catalysts for selective catalytic reduction of NOx with NH3[J]. Korean J. Chem. Eng,2017,34(6):1858−1866. doi: 10.1007/s11814-017-0047-8 [6] XU Li-ting, NIU Sheng-li, LU Chun-mei, et al. NH3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts[J]. Korean J. Chem. Eng,2017,34(5):1576−1583. doi: 10.1007/s11814-017-0044-y [7] QIU Yue, LIU Bo, DU Jun, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chem. Eng. J,2016,294:264−272. doi: 10.1016/j.cej.2016.02.094 [8] WANG Dong, LUO Jin-ming, YANG Qi-le, et al. Deactivation Mechanism of Multipoisons in Cement Furnace Flue Gas on Selective Catalytic Reduction Catalysts[J]. Environ. Sci. Technol,2019,53(12):6937−6944. doi: 10.1021/acs.est.9b00337 [9] MACHIDA M, TOKUDOME Y, MAEDA A, et al. Nanometric Platinum Overlayer to Catalyze NH3 Oxidation with High Turnover Frequency[J]. ACS Catal,2020,10(8):4677−4685. doi: 10.1021/acscatal.0c00542 [10] Ma Han-yu, SCHNEIDER W F. Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities[J]. ACS Catal,2019,9(3):2407−2414. doi: 10.1021/acscatal.8b04251 [11] Sun Meng-meng, LIU Jing-ying, SONG Chang, et al. Different Reaction Mechanisms of Ammonia Oxidation Reaction on Pt/Al2O3 and Pt/CeZrO2 with Various Pt States[J]. ACS Appl. Mater. Interfaces,2019,11(26):23102−23111. doi: 10.1021/acsami.9b02128 [12] LI Pei-xin, ZHANG Run-duo, LIU Ning, et al. Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N2 formation during NH3 selective catalytic oxidation (NH3-SCO)[J]. Appl. Catal. B,2017,203:174−188. doi: 10.1016/j.apcatb.2016.10.021 [13] SHIN J H, KIM G J, HONG S C. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen[J]. Appl. Surf. Sci,2020,506:144906. doi: 10.1016/j.apsusc.2019.144906 [14] LIU Zhi-ming, ZHU Jun-zhi, LI Jun-hua, et al. Novel Mn-Ce-Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH3[J]. ACS Appl. Mater. Interfaces,2014,6(16):14500−14508. doi: 10.1021/am5038164 [15] PAREDES J R, ORDONEZ S, VEGA A, et al. Catalytic combustion of methane over red mud-based catalysts[J]. Appl. Catal. B,2004,47(1):37−45. doi: 10.1016/S0926-3373(03)00325-4 [16] Liu Zhi-ming, SU Hang, CHEN Biao-hua, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3[J]. Chem. Eng. J, 2016, 299: 255-262: 119186. [17] LEE S C, JANG J H, LEE B Y, et al. The effect of binders on structure and chemical properties of Fe-K/gamma-Al2O3 catalysts for CO2 hydrogenation[J]. Appl. Catal. A,2003,253(1):293−304. doi: 10.1016/S0926-860X(03)00540-4 [18] SONG Shao-qing, JIANG Shu-juan. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of CNTs on the catalytic activity and selectivity[J]. Appl. Catal. B,2012,117:346−350. [19] CHEN Si-ning, VASILIADES M A, YAN Qing-hua, et al. Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies[J]. Appl. Catal. B, 2020, 277. [20] RUTKOWSKA M, DUDA M, MACINA D, et al. Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process[J]. Microporous Mesoporous Mater,2019,278:1−13. doi: 10.1016/j.micromeso.2018.11.003 [21] CAMPISI S, PALLIGGIANO S, GERVASINI A, et al. Finely Iron-Dispersed Particles on beta Zeolite from Solvated Iron Atoms: Promising Catalysts for NH3-SCO[J]. J. Phys. Chem. C,2019,123(18):11723−11733. doi: 10.1021/acs.jpcc.9b01474 [22] 郑足红, 童华, 童志权, 等. Mn-V-Ce/TiO2低温催化还原NO性能研究[J]. 燃料化学学报(中英文),2010,38(3):343−351.ZHENG Zu-Gong, Tong-Hua, Tong-Zhi-Quan, et al. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature[J]. J. Fuel Chem. Technol,2010,38(3):343−351. [23] LIPPITS M J, GLUHOI A C, NIEUWENHUYS B E. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx[J]. Catal. Today,2008,137(2-4):446−452. doi: 10.1016/j.cattod.2007.11.021 [24] Liu Wen-jie, LONG Yi-fei, LIU Shi-nian, et al. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts[J]. J. Ind. Eng. Chem,2022,107:197−206. doi: 10.1016/j.jiec.2021.11.045 [25] 王继封, 王慧敏, 张亚青, 等. WO3的引入对MnOx-Fe2O3催化剂上NH3-SCR反应中N2选择性的促进作用[J]. 燃料化学学报(中英文),2019,47(7):814−822.WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, et al. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J. Fuel Chem. Technol,2019,47(7):814−822. [26] 王明洪, 王亮亮, 刘俊, 等. 过渡金属对选择性催化还原脱硝CeO2@TiO2催化剂低温活性的促进作用[J]. 燃料化学学报(中英文),2017,45(4):497−504.WANG Ming-hong, WANG Liang-liang, LIU Jun, et al. Promoting effect of transition metal on low-temperature deNOx activity of CeO2@TiO2 catalyst for selective catalytic reduction[J]. J. Fuel Chem. Technol,2017,45(4):497−504. [27] DE RESENDE E C, GISSANE C, NICOL R, et al. Synergistic co-processing of Red Mud waste from the Bayer process and a crude untreated waste stream from bio-diesel production[J]. Green Chem,2013,15(2):496−510. doi: 10.1039/c2gc36714a [28] WU Jing-kun, GONG Zhi-qiang, LU Chun-mei, et al. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3[J]. Catal,2018,8(1):35. [29] LYU F, HU Yue-hua, WANG Li, et al. Dealkalization processes of bauxite residue: A comprehensive review[J]. J. Hazard. Mater,2021,403:123671. doi: 10.1016/j.jhazmat.2020.123671 [30] WANG Dong, PENG Yue, XIONG Shang-chao, et al. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study[J]. Appl. Catal. B,2018,221:556−564. doi: 10.1016/j.apcatb.2017.09.045 [31] GONG Zhi-qiang, MA Jun, WANG Dong, et al, CRITTENDEN J. Insights into modified red mud for the selective catalytic reduction of NOx: Activation mechanism of targeted leaching[J]. J. Hazard. Mater,2020,394:122536. doi: 10.1016/j.jhazmat.2020.122536 [32] MENG Yuan, LIU Wei-yi, FIEDLER H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng,2021,15(5):104. doi: 10.1007/s11783-021-1392-8 [33] 康海彦, 莫杜娟, 张学军, 等. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J]. 燃料化学学报(中英文), 2023: 1-11. (KANG Hai-yan, MO Du-juan, ZHANG Xue-jun, et al. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for selective catalytic reduction with NH3[J]. J. Fuel Chem. Technol, 2023, 51(6): 812-822. doi: 10.19906/j.cnki.JFCT.2023005) -