留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙铈基催化剂上碳酸丙烯酯和甲醇制备碳酸二甲酯的研究

郭炯 杨金海 史依琳 赵宁 肖福魁 姜新东

郭炯, 杨金海, 史依琳, 赵宁, 肖福魁, 姜新东. 钙铈基催化剂上碳酸丙烯酯和甲醇制备碳酸二甲酯的研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60394-9
引用本文: 郭炯, 杨金海, 史依琳, 赵宁, 肖福魁, 姜新东. 钙铈基催化剂上碳酸丙烯酯和甲醇制备碳酸二甲酯的研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60394-9
GUO Jiong, YANG Jinhai, SHI Yilin, ZHAO Ning, XIAO Fukui, JIANG Xindong. Investigation of Carbonate Dimethyl Ester Production from Propylene Carbonate and Methanol on Calcium Cerium-based Catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60394-9
Citation: GUO Jiong, YANG Jinhai, SHI Yilin, ZHAO Ning, XIAO Fukui, JIANG Xindong. Investigation of Carbonate Dimethyl Ester Production from Propylene Carbonate and Methanol on Calcium Cerium-based Catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60394-9

钙铈基催化剂上碳酸丙烯酯和甲醇制备碳酸二甲酯的研究

doi: 10.1016/S1872-5813(23)60394-9
基金项目: 山西省自然科学基金(22078201),国家自然科学基金—面上项目(22078201),国家自然科学基金—辽宁联合基金(U1908202),山西省重点研发计划(202005D121002),中央引导地方科技发展项目(2020SW26)资助
详细信息
    通讯作者:

    Tel:13935170768, 13403457648, 13889207608, E-mail: zhaoning@sxicc.ac.cn

    xiaofk@sxicc.ac.cn

    xdjiang@syuct.edu.cn

  • 中图分类号: TQ225

Investigation of Carbonate Dimethyl Ester Production from Propylene Carbonate and Methanol on Calcium Cerium-based Catalysts

Funds: The project was supported by the Natural Science Foundation of Shanxi Province (22078201), National Natural Science Foundation of China (22078201), Joint Funds of the National Natural Science Foundation of China (U1908202), Science and Technology Major Project of Shanxi Province (202005D121002), The Central Project Guide Local Science and Technology for Development (2020SW26).
  • 摘要: 采用溶胶凝胶法制备了不同比例的钙铈基催化剂,并研究了其对于碳酸丙烯酯和甲醇制备碳酸二甲酯的酯交换反应性能。结果表明, Ca∶Ce=9的催化剂在反应时间2小时,温度40 ℃,甲醇与碳酸丙烯酯摩尔比为15∶1,催化剂用量为碳酸丙烯酯用量4%的条件下,碳酸丙烯酯转化率达到91.1%,碳酸二甲酯选择性达到91.7%。采用XRD、N2吸脱附、FT-IR、XPS和CO2-TPD对催化剂进行了表征,结果表明,催化剂表面的氧空穴越多,中等碱性位数量越多,越有利于甲醇的活化,催化剂的活性越好。
  • 图  1  不同比例钙铈基催化剂的XRD图

    Figure  1  XRD patterns of the catalysts with different Ca∶Ce molar ratio

    图  2  不同比例钙铈基催化剂的N2吸附-解吸等温线和孔径分布图

    Figure  2  N2 adsorption-desorption isotherms and pore size distribution of CaxCe1-xOz with different Ca∶Ce molar ratio

    图  3  不同比例钙铈基催化剂的红外光谱图

    Figure  3  FT-IR spectra of the catalysts with different Ca:Ce molar ratio

    图  4  不同比例钙铈基催化剂的XPS图

    Figure  4  XPS spectra of the catalysts with different Ca∶Ce molar ratio

    图  5  不同比例钙铈基催化剂的CO2-TPD图

    Figure  5  CO2-TPD profiles of the catalysts with different Ca∶Ce molar ratio

    图  6  0.9CaCe催化剂反应条件优化及循环使用性能

    Figure  6  Optimization of reaction conditions and recyclability for 0.9CaCe catalyst

    图  7  氧空穴占比与PC转化率的关系(a),中强碱性位点占比与PC转化率的关系(b)

    Figure  7  Relationship between oxygen defect proportion and PC conversion (a); relationship between medium-strong basic site proportion and PC conversion (b)

    表  1  不同比例钙铈基催化剂的织构参数

    Table  1  Textural parameters of the catalysts with different Ca∶Ce molar ratio

    CatalystsSBET /
    (m2·g−1)
    Pore volum /
    (cm3·g−1)a
    Average pore size/
    (nm)b
    0.9CaCe10.90.0313.0
    0.7CaCe1.80.0260.1
    0.5CaCe5.90.0226.9
    0.3CaCe1.60.0148.7
    0.1CaCe0.70.0139.4
    aMeasured at p/p0 = 0.99
    bCalculated from isothermal desorption branches using the BJH method
    下载: 导出CSV

    表  2  催化剂中Ca和O的结合能值

    Table  2  Binding energy values of the catalysts

    CatalystsBinding energy (eV)
    Ca2pO1s
    0.9CaCe346.86;350.41528.89;531.3;532.42
    0.7CaCe346.64;350.2528.77;531.13;532.07
    0.5CaCe346.58;350.13528.61;531.03;532.25
    0.3CaCe346.64;350.19528.69;531.14;532.87
    0.1CaCe346.51;350.1528.51;531.01;532.42
    下载: 导出CSV

    表  3  催化剂表面氧物种的相对含量

    Table  3  Relative content of oxygen species of the catalysts

    CatalystsO1s
    O1O2O3
    0.9CaCe5.92%80.30%13.79%
    0.7CaCe20.01%63.04%16.95%
    0.5CaCe31.34%57.33%11.33%
    0.3CaCe41.61%52.32%6.07%
    0.1CaCe51.90%40.33%7.76%
    下载: 导出CSV

    表  4  催化剂的总碱位数量和各碱性位点所占比例

    Table  4  The total number and the proportion of each basic site of the catalysts

    Catalystsα Peak/%β Peak/%Total basicity(mmol/g)
    0.9CaCe3.9696.041.85
    0.7CaCe22.7677.240.35
    0.5CaCe23.9876.020.52
    0.3CaCe44.8155.190.12
    0.1CaCe53.3146.690.04
    下载: 导出CSV

    表  5  钙铈基催化剂的反应性能评价结果

    Table  5  Catalytic performance of the catalysts

    CatalystsReaction conditionsPC
    Conv.%
    DMC
    Sel.%
    Temp./oCTime/tCH3OH /PCM催化剂/MPC
    (%)
    0.1CaCe60215432.0%6.3%
    0.3CaCe60215461.3%45.7%
    0.5CaCe60215474.3%87.5%
    0.7CaCe60215488.9%87.4%
    0.9CaCe60215489.4%87.4%
    CeO260215443.7%0.0%
    下载: 导出CSV
  • [1] AHMAD RUSLAN N A A, KAN S Y, HAMZAH A S, et al. Natural food additives as green catalysts in organic synthesis: a review[J]. Environmental Chemistry Letters,2021,19(4):3359−3380. doi: 10.1007/s10311-021-01209-8
    [2] SHARMA S, DAS J, BRAJE W M, et al. A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry[J]. Chemsuschem,2020,13(11):2859−2875. doi: 10.1002/cssc.202000317
    [3] TUNDO P, MUSOLINO M, ARICO F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chemistry,2018,20(1):28−85. doi: 10.1039/C7GC01764B
    [4] DABRAL S, ENGEL J, MOTTWEILER J, et al. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate[J]. Green Chemistry,2018,20(1):170−182. doi: 10.1039/C7GC03110F
    [5] GAO Y, LI Z, SU K, et al. Excellent performance of TiO2(B) nanotubes in selective transesterification of DMC with phenol derivatives[J]. Chemical Engineering Journal,2016,301:12−18. doi: 10.1016/j.cej.2016.04.036
    [6] DU Z, ZHOU B, XIONG J, et al. Advances in catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol[J]. Chemical Engineering,2012,40(8):29−32.
    [7] ZHAO Y, LIU S, WANG G, et al. Progress in Synthesis of Dimethyl Carbonate from Urea[J]. Chemical Industry and Engineering Progress,2004,23(10):1049−1052.
    [8] YANHONG C, HUAJUN W. Progress in synthesis of dimethyl carbonate via transesterification[J]. Chemical Industry and Engineering Progress,2007,26(5):642−646.
    [9] LI H S, ZHONG S H. Dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Progress in Chemistry,2002,14(5):368−373.
    [10] KOHLI K, SHARMA B K, PANCHAL C B. Dimethyl Carbonate: Review of Synthesis Routes and Catalysts Used[J]. Energies, 2022, 15(14).
    [11] HOLTBRUEGGE J, KUHLMANN H, LUTZE P. Process analysis and economic optimization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol[J]. Chemical Engineering Research & Design,2015,93:411−431.
    [12] AN H, ZHANG G, ZHAO X, et al. Preparation of highly stable Ca-Zn-Al oxide catalyst and its catalytic performance for one-pot synthesis of dimethyl carbonate[J]. Catalysis Today,2018,316:185−192. doi: 10.1016/j.cattod.2018.03.006
    [13] LI F, LIAO Y H, ZHAO N, et al. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. Journal of Fuel Chemistry and Technology,2022,50(1):80−89. doi: 10.1016/S1872-5813(21)60165-2
    [14] AHIRE J, BHANAGE B M. Solar Light Assisted Synthesis of CeO2 Nanoparticles for Transesterification of Ethylene Carbonate with Methanol to Dimethyl Carbonate[J]. Catalysis Letters,2022,152(11):3284−3293. doi: 10.1007/s10562-022-03927-2
    [15] SHI Y B, ZHANG G L, SUN Y C, et al. KIT-6 Supported CeO2 for Catalytic Synthesis of Dimethyl Carbonate from CO2 and Methanol[J]. Chinese Journal of Inorganic Chemistry,2021,37(6):1004−1016.
    [16] KUMAR N, SRIVASTAVA V C. Dimethyl Carbonate Synthesis via Transesterification of Propylene Carbonate Using an Efficient Reduced Graphene Oxide-Supported ZnO Nanocatalyst[J]. Energy & Fuels,2020,34(6):7455−7464.
    [17] TIAN X, ZENG Y, XIAO T, et al. Fabrication and stabilization of nanocrystalline ordered mesoporous MgO-ZrO2 solid solution[J]. Microporous and Mesoporous Materials,2011,143(2-3):357−361. doi: 10.1016/j.micromeso.2011.03.015
    [18] XU J, CHEN Y, MA D, et al. Simple preparation of MgO/g-C3N4 catalyst and its application for catalytic synthesis of dimethyl carbonate via transesterification[J]. Catalysis Communications,2017,95:72−76. doi: 10.1016/j.catcom.2017.03.009
    [19] WANG H, WANG M, ZHANG W, et al. Synthesis of dimethyl carbonate from propylene carbonate and methanol using CaO-ZrO2 solid solutions as highly stable catalysts[J]. Catalysis Today,2006,115(1-4):107−110. doi: 10.1016/j.cattod.2006.02.031
    [20] WEI T, WANG M H, WEI W, et al. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Fuel Processing Technology,2003,83(1-3):175−182. doi: 10.1016/S0378-3820(03)00065-1
    [21] YOU Q, YIN X, WANG J, et al. A recyclable solid catalyst of KF/Ca-Mg-Al-O using for biodiesel production from jatropha seed oil: preparation, characterization, and methanolysis process optimization[J]. Materials Research Express, 2022, 9(6).
    [22] CAKIRCA E E, AKIN A N. Study on heterogeneous catalysts from calcined Ca riched hydrotalcite like compounds for biodiesel production[J]. Sustainable Chemistry and Pharmacy, 2021, 20.
    [23] KUMAR P, SRIVASTAVA V C, MISHRA I M. Synthesis and characterization of Ce-La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate[J]. Catalysis Communications,2015,60:27−31. doi: 10.1016/j.catcom.2014.11.006
    [24] LUO J, WANG Y, WANG F, et al. Aerobic Oxidation of Fluorene to Fluorenone over Copper-Doped Co3O4 with a High Specific Surface Area[J]. Acs Sustainable Chemistry & Engineering,2020,8(6):2568−2576.
    [25] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10):1051−1069. doi: 10.1515/pac-2014-1117
    [26] WU X, KANG M, ZHAO N, et al. Dimethyl carbonate synthesis over ZnO-CaO bi-functional catalysts[J]. Catalysis Communications,2014,46:46−50. doi: 10.1016/j.catcom.2013.10.040
    [27] JI X, YANG J, ZHAO N, et al. Synthesis of ethylene carbonate by alcoholysis of urea over Zn-Zr mixed oxides[J]. Inorganic Chemistry Communications, 2021, 134.
    [28] LI F, WANG Y F, YANG Q Z, et al. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution[J]. Journal of Hazardous Materials,2005,125(1-3):89−95. doi: 10.1016/j.jhazmat.2005.04.037
    [29] LIAO Y, LI F, PU Y, et al. Solid base catalysts derived from Ca−Al−X (X = F, Cl and Br) layered double hydroxides for methanolysis of propylene carbonate[J]. Rsc Advances,2018,8(2):785−791. doi: 10.1039/C7RA10832J
    [30] PAL D B, LAVANIA R, SRIVASTAVA P, et al. Photo-catalytic degradation of methyl tertiary butyl ether from wastewater using CuO/CeO2 composite nanofiber catalyst[J]. Journal of Environmental Chemical Engineering,2018,6(2):2577−2587. doi: 10.1016/j.jece.2018.04.001
    [31] AL-DARWISH J, SENTER M, LAWSON S, et al. Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to carbonate[J]. Catalysis Today,2020,350:120−126. doi: 10.1016/j.cattod.2019.06.013
    [32] HUO L, WANG T, PU Y, et al. Effect of Cobalt Doping on the Stability of CaO-Based Catalysts for Dimethyl Carbonate Synthesis via the Transesterification of Propylene Carbonate with Methanol[J]. Chemistryselect,2021,6(38):10226−10237. doi: 10.1002/slct.202102987
    [33] 刘春宇, 宋忠贤, 张学军, 等. 过渡金属改性Ce-M-Ox(M=Cu, Co, Mn和Fe)催化剂在NH3-SCR反应研究[J]. 化学试剂,2023,45(3):53−60.

    LIU Chun-Yu, SONG Zhong-Xian, ZHANG Xue-Jun, et al. Study on Transition-Metal-Modified Ce-M-Ox( M=Cu, Co, Mn, and Fe) Catalysts in the NH3-SCR Reaction[J]. Chemical Reagents,2023,45(3):53−60.
    [34] WANG J, YANG L, LUO W, et al. Sustainable biodiesel production via transesterification by using recyclable Ca2MgSi2O7 catalyst[J]. Fuel,2017,196:306−313. doi: 10.1016/j.fuel.2017.02.007
    [35] MARCINIUK L L, HAMMER P, PASTORE H O, et al. Sodium titanate as basic catalyst in transesterification reactions[J]. Fuel,2014,118:48−54. doi: 10.1016/j.fuel.2013.10.036
    [36] LIU B, LI C, ZHANG G, et al. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods[J]. Acs Catalysis,2018,8(11):10446−10456. doi: 10.1021/acscatal.8b00415
    [37] 王兰心, 于雪莲, 安晓强. 基于氧空位构筑路易斯酸碱位点及其在环境光催化中的应用[J]. 南京信息工程大学学报(自然科学版),2023,15(3):253−266.

    Wang Lan-Xin, YU Xue-Lian, AN Xiao-Qiang. Constructing Lewis acid-base sites based on oxygen vacancies and their application in environmental photocatalysis[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(3):253−266.
    [38] CUTRUFELLO M G, ATZORI L, MELONI D, et al. Synthesis of Dimethyl Carbonate by Transesterification of Propylene Carbonate with Methanol on CeO2-La2O3 Oxides Prepared by the Soft Template Method[J]. Materials, 2021, 14(17).
    [39] FU Z, ZHONG Y, YU Y, et al. TiO2-Doped CeO2 Nanorod Catalyst for Direct Conversion of CO2 and CH3OH to Dimethyl Carbonate: Catalytic Performance and Kinetic Study[J]. Acs Omega,2018,3(1):198−207. doi: 10.1021/acsomega.7b01475
    [40] KUMAR P, KAUR R, VERMA S, et al. The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate[J]. Fuel,2018,220:706−716. doi: 10.1016/j.fuel.2018.01.137
    [41] SMOLAKOVA L, FROLICH K, TROPPOVA I, et al. Determination of basic sites in Mg-Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry[J]. Journal of Thermal Analysis and Calorimetry,2017,127(3):1921−1929. doi: 10.1007/s10973-016-5851-6
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-11-10

目录

    /

    返回文章
    返回