留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小晶粒NiY分子筛的合成及其加氢裂化反应性能

孙劲晓 王晓晗 魏强 周亚松

孙劲晓, 王晓晗, 魏强, 周亚松. 小晶粒NiY分子筛的合成及其加氢裂化反应性能[J]. 燃料化学学报(中英文), 2024, 52(6): 775-789. doi: 10.1016/S1872-5813(24)60432-9
引用本文: 孙劲晓, 王晓晗, 魏强, 周亚松. 小晶粒NiY分子筛的合成及其加氢裂化反应性能[J]. 燃料化学学报(中英文), 2024, 52(6): 775-789. doi: 10.1016/S1872-5813(24)60432-9
SUN Jinxiao, WANG Xiaohan, WEI Qiang, ZHOU Yasong. Synthesis of small crystal NiY zeolites and their catalytic performance in hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 775-789. doi: 10.1016/S1872-5813(24)60432-9
Citation: SUN Jinxiao, WANG Xiaohan, WEI Qiang, ZHOU Yasong. Synthesis of small crystal NiY zeolites and their catalytic performance in hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 775-789. doi: 10.1016/S1872-5813(24)60432-9

小晶粒NiY分子筛的合成及其加氢裂化反应性能

doi: 10.1016/S1872-5813(24)60432-9
基金项目: 国家自然科学基金 (22078360)资助
详细信息
    通讯作者:

    E-mail: qwei@cup.edu.cn

    zhouyasong2011@163.com

  • 中图分类号: O643

Synthesis of small crystal NiY zeolites and their catalytic performance in hydrocracking

Funds: The project was supported by National Natural Science Foundation of China (22078360).
  • 摘要: 通过在小晶粒Y分子筛合成的过程中原位引入Ni源合成了一系列不同Ni掺入量的小晶粒Y-xNi分子筛,将活性金属Ni预浸渍到Y分子筛的骨架中。将Y-xNi分子筛和ASA混合物作为载体并采用等体积浸渍法负载Ni和W,制备了系列Cat-xNi加氢裂化催化剂,以正十六烷为反应物,探究其加氢裂化催化反应性能。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附-脱附、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了Ni的掺入对Y分子筛及Cat-xNi催化剂理化性质的影响。结果表明,Ni主要取代Al引入Y分子筛骨架;在Y分子筛中适量掺入Ni会提高Y分子筛的相对结晶度以及Brønsted酸和Lewis酸位点的数量,但过量的Ni掺入不利于Y分子筛的结晶。Ni的掺入削弱了金属与载体间的相互作用,提高了活性金属的硫化度及NiWS活性相的堆积数及分散度,调节了催化剂上金属中心与酸中心的匹配。催化性能评价结果显示,由于Ni改性能同时增加Brønsted酸中心与NiWS活性中心数量,增强金属中心与酸中心之间的协同作用,因而在提高正十六烷加氢裂化活性的同时可避免其过度裂化,获得较高的中间馏分产物(C8–C12)选择性及收率。在360 °C反应条件下,与Cat-0Ni催化剂相比,Cat-0.2Ni催化剂具有较高的n-C16转化率和C8–C12产物收率(达65.4%)。综上可知,采用原位合成法将活性金属Ni预浸渍在Y分子筛上可以有效调节裂化活性中心与加氢活性中心之间的平衡,从而提高其催化活性和中间馏分产物的收率。
  • FIG. 3153.  FIG. 3153.

    FIG. 3153.  FIG. 3153.

    图  1  Y-xNi系列分子筛的XRD谱图

    Figure  1  XRD patterns of the synthesized Y-xNi zeolites

    图  2  Y-xNi系列分子筛的SEM照片

    Figure  2  SEM images of the synthesized Y-xNi zeolites

    图  3  Y-xNi系列分子筛的N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption (a) and pore size distribution curves (b) of the synthesized Y-xNi zeolites

    图  4  Y-xNi系列分子筛的Ni 2p XPS (a)、O 1s XPS (b)、 Al 2p XPS (c)和Si 2p XPS (d)谱图及其分峰结果

    Figure  4  Ni 2p (a), O 1s (b), Al 2p (c) and Si 2p (d) XPS spectra of the synthesized Y-xNi zeolites

    图  5  Y-xNi系列分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of the synthesized Y-xNi zeolites

    图  6  Y-xNi系列分子筛的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of the synthesized Y-xNi zeolites

    图  7  Cat-xNi系列催化剂未硫化NiW催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles for the non-sulfided NiW catalysts

    图  8  Cat-xNi系列硫化态NiW催化剂的HRTEM照片

    Figure  8  HRTEM images of the sulfided NiW catalysts

    图  9  硫化NiW催化剂上WS2片晶的长度(a)和堆叠层数(b)的分布

    Figure  9  Distributions of layer length (a) and stacking number (b) of WS2 slabs on the sulfided NiW catalysts

    图  10  硫化NiW系列催化剂的W 4f XPS (a) 和Ni 2p XPS (b)谱图及其分峰结果

    Figure  10  W 4f (a) and Ni 2p (b) XPS spectra of the sulfided NiW series catalysts

    图  11  Cat-xNi系列硫化催化剂在不同反应温度下n-C16的转化率(a)、C8−C12的选择性(b)和收率(c)以及在360 ℃条件下重复三次实验后不同催化剂的C8−C12的收率(d)

    Figure  11  Conversion of n-C16 (a), selectivity of C8−C12 (b) and yield of C8−C12 (c) over the sulfided NiW catalysts at different reaction temperature; the average yield of C8–C12 (with the error bar) derived from three repetitive tests at 360 °C for different sulfided Cat-xNi catalysts (d)

    表  1  不同Ni含量杂原子Y-xNi分子筛的理化性质

    Table  1  Physicochemical properties of the synthesized Y-xNi zeolites with different Ni contents

    Sample n(NiO/Al2O3) Relative crystallinityb/
    %
    Crystal sizec/
    nm
    SBET/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    Average pore diameter/
    nm
    theoretical actuala
    Y-0Ni 0 0 100 125 634.4 0.64 6.7
    Y-0.1Ni 0.1 0.09 102 136 612.1 0.62 6.4
    Y-0.2Ni 0.2 0.17 97 141 600.6 0.61 6.1
    Y-0.3Ni 0.3 0.26 92 146 588.4 0.59 5.9
    Y-0.4Ni 0.4 0.37 88 152 560.2 0.55 5.1
    a: Calculated from XRF results (test sample was HY-xNi zeolites after ion-exchange); b: Calculated from XRD results and Eq. (1); c: Statistically calculated from SEM image results.
    下载: 导出CSV

    表  2  Y-xNi系列分子筛上各物种分峰拟合

    Table  2  XPS deconvolution results of the synthesized Y-xNi zeolites

    Catalyst Si−O−Si/% Si−O−H/% Si−O−Al/% Ni−O/% Ni2+/% Ni3+/%
    Y-0Ni 39.6 28.1 32.3
    Y-0.1Ni 37.3 25.8 23.5 13.4 43.0 57.0
    Y-0.2Ni 38.1 29.1 17.6 15.2 46.7 53.3
    Y-0.3Ni 38.8 30.0 13.4 17.8 50.1 49.9
    Y-0.4Ni 39.1 30.8 10.9 19.2 55.4 44.6
    下载: 导出CSV

    表  3  Y-xNi系列分子筛的酸类型及酸量

    Table  3  Acidity of the synthesized Y-xNi zeolites

    Sample Acidity/(μmol·g−1)
    total acid sites (200 ℃) medium and strong acid sites (350 ℃) totald
    L B L+B B/L L B L+B B/L
    Y-0Ni 96 220 316 2.3 45 158 206 3.5 414
    Y-0.1Ni 125 233 358 1.9 63 164 227 2.6 452
    Y-0.2Ni 162 242 404 1.5 88 171 259 1.9 486
    Y-0.3Ni 193 254 447 1.3 107 182 289 1.7 522
    Y-0.4Ni 228 257 485 1.1 124 189 313 1.5 591
    d: Calculated from NH3-TPD results.
    下载: 导出CSV

    表  4  硫化催化剂上WS2的平均长度、堆垛层数、fw

    Table  4  Average length, stacking number, fw values of WS2 slabs for the sulfided Cat-xNi catalysts

    Catalyst Length/nm Stacking number fw
    Cat-0Ni 3.65 3.54 0.34
    Cat-0.1Ni 3.61 3.55 0.35
    Cat-0.2Ni 3.56 3.58 0.36
    Cat-0.3Ni 3.48 3.58 0.37
    Cat-0.4Ni 3.65 3.47 0.32
    下载: 导出CSV

    表  5  硫化NiW系列催化剂上各物种分峰拟合结果

    Table  5  XPS deconvolution results of the sulfide NiW series catalysts

    Catalyst WS2/% WOxSy/% WO3/% Nisulfidation/% NiWS/% NixSy/% NiO/%
    Cat-0Ni 68.1 10.2 21.7 70.1 58.6 11.5 32.9
    Cat-0.1Ni 68.7 11.4 19.9 68.3 59.1 9.2 31.7
    Cat-0.2Ni 69.0 11.8 19.2 69.5 59.7 9.8 30.5
    Cat-0.3Ni 69.2 12.1 18.7 70.2 60.8 9.4 29.8
    Cat-0.4Ni 51.8 9.8 38.4 63.6 52.9 10.7 36.4
    下载: 导出CSV

    表  6  360 ℃下五种催化剂的n-C16加氢裂化活性数据

    Table  6  Results of the n-C16 hydrocracking reaction over five catalysts at 360 ℃

    Catalyst ka/(mol·g–1·h−1) TOFa,b/h−1 n-C16 conversion/% C8−C12 selectivity/% C8−C12 yield/%
    Cat-0Ni 1.09×10−2 25.79 65.2 88.9 58.1
    Cat-0.1Ni 1.22×10−2 27.32 71.3 86.6 61.7
    Cat-0.2Ni 1.31×10−2 28.05 75.1 86.0 64.6
    Cat-0.3Ni 1.44×10−2 29.44 76.2 75.4 57.5
    Cat-0.4Ni 1.68×10−2 38.19 81.0 68.9 55.8
    a: The rate constant k and TOF values were determined at an n-C16 conversion of about 30% by changing the LHSV for reaction; b: The TOF value is number of n-C16 molecules converted per hour per mole of W atoms.
    下载: 导出CSV
  • [1] BROWNING B E, PITAULT I, COUENNE F, et al. Effects of bifunctional catalyst geometry on vacuum gas oil hydrocracking conversion and selectivity for middle distillate[J]. Ind Eng Chem Res,2018,57(49):16579−16592. doi: 10.1021/acs.iecr.8b03003
    [2] LABABIDI H M S, CHEDADEH D, RIAZI M R, et al. Prediction of product quality for catalytic hydrocracking of vacuum gas oil[J]. Fuel,2011,90(2):719−727. doi: 10.1016/j.fuel.2010.09.046
    [3] DING L, SITEPU H, AL-BOGAMI S A, et al. Effect of zeolite-Y modification on crude-oil direct hydrocracking[J]. ACS Omega,2021,6(43):28654−28662. doi: 10.1021/acsomega.1c03029
    [4] SAHU R, SONG B J, IM J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. J Ind Eng Chem,2015,27:12−24. doi: 10.1016/j.jiec.2015.01.011
    [5] FRANCIS J, GUILLON E, BATS N, et al. Design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites[J]. Appl Catal A: Gen,2011,409−410:140−147. doi: 10.1016/j.apcata.2011.09.040
    [6] WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal-acid balance and textural structure[J]. Catal Sci Technol,2019,9(16):4162−4187. doi: 10.1039/C9CY00499H
    [7] LI D, NISHIJIMA A, MORRIS D E, et al. Activity and structure of hydrotreating Ni, Mo, and Ni-Mo sulfide catalysts supported on γ-Al2O3-USY zeolite[J]. J Catal,1999,188(1):111−124. doi: 10.1006/jcat.1999.2663
    [8] RANA M S, ANCHEYTA J, MAITY S K, et al. Heavy crude oil hydroprocessing: A zeolite-based CoMo catalyst and its spent catalyst characterization[J]. Catal Today,2008,130(2):411−420.
    [9] CUI Q, WANG S, WEI Q, et al. Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil[J]. Fuel,2019,237:597−605. doi: 10.1016/j.fuel.2018.10.040
    [10] BATALHA N, PINARD L, BOUCHY C, et al. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. J Catal,2013,307:122−131. doi: 10.1016/j.jcat.2013.07.014
    [11] DING L, ZHENG Y, YANG H, et al. LCO hydrotreating with Mo-Ni and W-Ni supported on nano- and micro-sized zeolite beta[J]. Appl Catal A: Gen,2009,353(1):17−23. doi: 10.1016/j.apcata.2008.10.023
    [12] 黄坚, 李先锋, 谢军, 等. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053

    HUANG Jian, LI Xianfeng, XIE Jun, et al. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chin J Environ Eng,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053
    [13] GU D, WANG H, LI Z, et al. Green synthesis of anthraquinone by one-pot method with Ni-modified Hβ zeolite[J]. Mol Catal,2023,538:112969. doi: 10.1016/j.mcat.2023.112969
    [14] JABŁOŃSKA M, KRÓL A, KUKULSKA-ZAJAC E, et al. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen[J]. J Catal,2014,316:36−46. doi: 10.1016/j.jcat.2014.04.022
    [15] VIEIRA L H, CARVALHO K T, URQUIETA-GONZÁLEZ E A, et al. Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration[J]. J Mol Catal A: Chem , 2016, 422 : 148−157.
    [16] ZHOU W, LIU M, ZHOU Y, et al. 4, 6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: effects of modification method[J]. Energy Fuels,2017,31(7):7445−7455. doi: 10.1021/acs.energyfuels.7b01113
    [17] LIN T J, MENG X, SHI L. Ni-exchanged Y-zeolite: An efficient heterogeneous catalyst for acetylene hydrocarboxylation[J]. Appl Catal A: Gen,2014,485:163−171. doi: 10.1016/j.apcata.2014.07.036
    [18] 于悦, 张佳, 吕忠武, 等. Ni改性HZSM-5催化剂对混合C4中异丁烯齐聚的影响[J]. 工业催化,2023,31(10):63−68. doi: 10.3969/j.issn.1008-1143.2023.10.009

    YU Yue, ZHANG Jia, LÜ Zhongwu, et al. Effect of Ni - modified HZSM-5 catalysts on oligomerization of isobutylene in mixed C4[J]. Ind Catal,2023,31(10):63−68. doi: 10.3969/j.issn.1008-1143.2023.10.009
    [19] CUI Q, ZHOU Y, WEI Q, et al. Performance of Zr-and P-modified USY-based catalyst in hydrocracking of vacuum gas oil[J]. Fuel Process Technol,2013,106:439−446. doi: 10.1016/j.fuproc.2012.09.010
    [20] WANG J, LIU P, BORONAT M, et al. Organic-Free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post‐synthesis treatment[J]. Angew Chem,2020,132(39):17378−17381. doi: 10.1002/ange.202005715
    [21] TAYEB K B, LAMONIER C, LANCELOT C, et al. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation[J]. Catal Today,2010,150(3/4):207−212. doi: 10.1016/j.cattod.2009.07.094
    [22] ZHOU W, WEI Q, ZHOU Y, et al. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Appl Catal B: Environ,2018,238:212−224. doi: 10.1016/j.apcatb.2018.07.042
    [23] LI X, WANG A, EGOROVA M, et al. Kinetics of the HDS of 4, 6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on γ-Al2O3[J]. J Catal,2007,250(2):283−293. doi: 10.1016/j.jcat.2007.06.005
    [24] CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Appl Catal A: Gen,2000,190(1/2):207−218. doi: 10.1016/S0926-860X(99)00292-6
    [25] MURAOKA K, SADA Y, SHIMOJIMA A, et al. Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite[J]. Chem Sci,2019,10(37):8533−8540. doi: 10.1039/C9SC02773D
    [26] MENG B, REN S, LI Z, et al. A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+[J]. Microporous Mesoporous Mater,2021,323:111248. doi: 10.1016/j.micromeso.2021.111248
    [27] LIU S, REN J, ZHU S, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal,2015,330:485−496. doi: 10.1016/j.jcat.2015.07.027
    [28] HUANG W, WEI Q, ZHOU Y, et al. Hydrotreating of diesel fuel over in-situ nickel modified Y zeolite supported Ni-Mo-S catalyst[J]. Catal Today,2023,407:135−145. doi: 10.1016/j.cattod.2022.02.002
    [29] WEI B, JIN L, WANG D, et al. Effect of different acid-leached USY zeolites on in-situ catalytic upgrading of lignite tar[J]. Fuel,2020,266:117089. doi: 10.1016/j.fuel.2020.117089
    [30] CHOO M-Y, JUAN J C, OI L E, et al. The role of nanosized zeolite Y in the H2-free catalytic deoxygenation of triolein[J]. Catal Sci Technol,2019,9(3):772−782. doi: 10.1039/C8CY01877D
    [31] LV P, YAN L, LIU Y, et al. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites[J]. J Energy Inst,2020,93(4):1354−1363. doi: 10.1016/j.joei.2019.12.005
    [32] NG E-P, NG D T-L, AWALA H, et al. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology[J]. Mater Lett,2014,132:126−129. doi: 10.1016/j.matlet.2014.06.022
    [33] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [34] VALLE B, PALOS R, BILBAO J, et al. Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking[J]. Fuel Process Technol,2022,227:107130.
    [35] PARLITZ B, SCHREIER E, ZUBOWA H, et al. Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular sieves[J]. J Catal,1995,155(1):1−11. doi: 10.1006/jcat.1995.1182
    [36] ALSOBAAI A, ZAKARIA R, HAMEED B. Gas oil hydrocracking on NiW/USY catalyst: Effect of tungsten and nickel loading[J]. Chem Eng J,2007,132(1/3):77−83. doi: 10.1016/j.cej.2007.01.021
    [37] 祖运, 秦玉才, 高雄厚, 等. 催化裂化条件下噻吩与改性Y分子筛的作用机制[J]. 燃料化学学报,2015,43(7):862−869.

    ZU Yun, QIN Yucai, GAO Xionghou, et al. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol,2015,43(7):862−869.
    [38] MOSQUEDA-JIMÉNEZ B, JENTYS A, SESHAN K, et al. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite[J]. Appl Catal B: Environ,2003,43(2):105−115. doi: 10.1016/S0926-3373(02)00280-1
    [39] SAAB R, POLYCHRONOPOULOU K, ANJUM D H, et al. Carbon nanostructure/zeolite Y composites as supports for monometallic and bimetallic hydrocracking catalysts[J]. Nanomaterials,2022,12(18):3246. doi: 10.3390/nano12183246
    [40] LU K, JIN F, WU G, et al. The synergetic effect of acid and nickel sites on bifunctional MWW zeolite catalysts for ethylene oligomerization and aromatization[J]. Sustainable Energy Fuels,2019,3(12):3569−3581. doi: 10.1039/C9SE00771G
    [41] PIETERSE J A, SESHAN K, DOMOKOS L, et al. On the accessibility of acid sites in ferrierite for pyridine[J]. J Catal,1999,187(2):518−520. doi: 10.1006/jcat.1999.2629
    [42] EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [43] MIRODATOS C, BARTHOMEUF D. Superacid sites in zeolites[J]. J Chem Soc, Chem Commun,1981,(2):39−40. doi: 10.1039/c39810000039
    [44] LI S, ZHENG A, SU Y, et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc,2007,129(36):11161−11171. doi: 10.1021/ja072767y
    [45] WANG Q, GIANNETTO G, GUISNET M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J Catal,1991,130(2):471−482. doi: 10.1016/0021-9517(91)90129-R
    [46] GUO F, LI J, LI W, et al. Quinoline hydrodenitrogenation over NiW/Al-MCM-41 catalysts with different al contents[J]. Russ J Appl Chem,2017,90(12):2055−2063. doi: 10.1134/S1070427217120242
    [47] KOSTYNIUK A, KEY D, MDLELENI M. 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance[J]. J Energy Inst,2020,93(2):552−564. doi: 10.1016/j.joei.2019.06.009
    [48] DE LEÓN J D, PICQUART M, VILLARROEL M, et al. Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts[J]. J Mol. Catal A: Chem , 2010, 323(1-2): 1-6.
    [49] ZHOU W, ZHOU Y, WEI Q, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT)[J]. Chem Eng J,2017,330:605−615. doi: 10.1016/j.cej.2017.08.005
    [50] TAYEB K B, LAMONIER C, LANCELOT C, et al. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Appl Catal B: Environ,2012,126:55−63. doi: 10.1016/j.apcatb.2012.06.025
    [51] ALSALME A, ALZAQRI N, ALSALEH A, et al. Efficient Ni-Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate[J]. Appl Catal B: Environ,2016,182:102−108. doi: 10.1016/j.apcatb.2015.09.018
    [52] HUR Y G, LEE D-W, LEE K-Y J F. Hydrocracking of vacuum residue using NiWS (x) dispersed catalysts[J]. Fuel,2016,185:794−803. doi: 10.1016/j.fuel.2016.08.027
    [53] CORTES J C, RODRIGUEZ C, MOLINA R, et al. Hydrocracking of 1-methylnaphtalene (1MN) over modified clays-supported NiMoS and NiWS catalyst[J]. Fuel,2021,295:120612. doi: 10.1016/j.fuel.2021.120612
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  44
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-01-27
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-03-09
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回