留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弥勒褐煤结构特征及其分子模型构建

张殿凯 李艳红 常丽萍 訾昌毓 张远琴 田国才 赵文波

张殿凯, 李艳红, 常丽萍, 訾昌毓, 张远琴, 田国才, 赵文波. 弥勒褐煤结构特征及其分子模型构建[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021026
引用本文: 张殿凯, 李艳红, 常丽萍, 訾昌毓, 张远琴, 田国才, 赵文波. 弥勒褐煤结构特征及其分子模型构建[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021026
ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021026
Citation: ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021026

弥勒褐煤结构特征及其分子模型构建

doi: 10.19906/j.cnki.JFCT.2021026
详细信息
    通讯作者:

    E-mail: liyh_2004@163.com

  • 中图分类号: TQ531

Structural characteristics of Mile lignite and its molecular model construction

  • 摘要: 以云南弥勒褐煤为研究对象,采用元素分析、傅里叶变换红外光谱、13C固体核磁共振波谱以及X射线光电子能谱等现代分析技术,获取了弥勒褐煤的结构参数信息。其中,芳香度为38.79%,芳香环取代基数量为3。芳香碳结构主要为苯和萘,脂肪碳结构以甲基、亚甲基为主;氧主要存在于醚氧、羧基和羰基中;氮主要以吡咯氮和吡啶氮的形式存在;硫主要为硫酚或硫醇。根据分析结果,构建出弥勒褐煤的分子结构模型,分子式为C147H148O36N2S。采用半经验法PM3基组和密度泛函理论M06-2X泛函对分子构型进行优化,优化后的模型立体构型显著,且芳香层片在空间上呈现不规则排列,各芳香环之间主要通过甲基、亚甲基、甲氧基以及脂肪环连接。模拟FT-IR光谱和模拟13C NMR波谱均与实验谱图吻合良好,证明了弥勒褐煤分子模型的准确性和合理性。
  • 图  1  分子模型构建流程图

    Figure  1.  Procedure of model construction

    图  2  ML的13C NMR分峰拟合谱图

    Figure  2.  13C NMR peak fitting spectra of ML

    图  3  ML的红外光谱谱图

    Figure  3.  FT-IR spectrum of ML

    图  4  ML的XPS分峰拟合图

    Figure  4.  XPS peak fitting diagrams of ML

    图  5  ML的分子结构模型(C147H148O36N2S)

    Figure  5.  Molecular structure model of ML(C147H148O36N2S)

    图  6  计算谱图与实验谱图对比:(a)FT-IR谱图;(b)13C NMR谱图

    Figure  6.  Comparsion ofthe calculated spectrums with the experimental spectrums: (a) the FT-IR spectrums; (b) the 13C NMR spectrums

    表  1  ML的工业分析与元素分析

    Table  1.   Proximate analysis and Ultimate analysis of ML

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafFCdafCHNStO
    7.229.5559.1840.8269.665.831.100.8322.58
    notes: Mad is the moisture mass fraction of sample on the air dry basis; Ad is the ash mass fraction of sample on the dry basis; Vdaf is the volatile matter mass fraction of sample on the dry ash-free basis; FCdaf is the fixed carbon mass fraction of sample on the dry ash-free basis; St is the total sulfur
    下载: 导出CSV

    表  2  ML 13C NMR分峰获得的含碳官能团的化学位移和含量

    Table  2.   The chemical shifts and the contents of carbon-containing functional groups obtained from 13C NMR peaks of ML

    Carbon typeChemical
    shift δ
    SymbolMolar content/%
    AliphaticAliphatic CH315fal13.40
    Aromatic CH320fala11.20
    Methylene25、31fal222.60
    Quaternary sp3C40fal35.36
    Oxygen aliphatic carbon55、63、74、83falo11.62
    AromaticAromatic protonated105、115、127faH23.95
    Aromatic bridgehead137fab3.84
    Alkylated aromatic146fas5.80
    Oxygen aromatic carbon154fao25.20
    CarbonylCarboxyl carbon173faC14.00
    Carbonyl carbon205faC23.03
    下载: 导出CSV

    表  3  ML的XPS分析

    Table  3.   XPS analysis results of ML

    Functional groupBinding energy E/eVContent/%
    C 1sC−C/C−H284.8(± 0.2)77.22
    C−O286.3(± 0.2)15.61
    C=O/O−C−O287.5(± 0.2)4.51
    COOH289.0(± 0.2)2.66
    O 1sInorganic oxygen530.3(± 0.2)2.45
    C=O/O−C−O531.4(± 0.2)35.24
    C−O532.5(± 0.2)43.20
    COOH533.9(± 0.2)19.10
    N 1sPyridine nitrogen N-6399.5(± 0.2)39.45
    Pyrrolic nitrogen N-5400.5(± 0.2)30.22
    Quaternary nitrogen N−Q401.3(± 0.2)18.89
    Oxidized nitrogen-X402.8(± 0.2)11.44
    S 2pMercaptan thiophenol163.8(± 0.2)48.82
    Thiophene type sulfide165.7(± 0.2)8.62
    Sulfoxide sulfur168.0(± 0.2)22.97
    Sulfone type sulfur169.5(± 0.2)8.62
    Inorganic sulfur171.1(± 0.2)10.97
    下载: 导出CSV

    表  4  ML分子结构中芳香结构的种类和数量

    Table  4.   Types and quantities of aromatic structures in ML molecules

    TypeAromatic unit structureNumber
    Benzene3
    Naphthalene3
    Pyridine1
    Pyrrole1
    下载: 导出CSV
  • [1] 童国通, 吴荣生. 宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究[J]. 燃料化学学报,2019,47(06):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003

    TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. J Fuel Chem Technol,2019,47(06):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003
    [2] FENG L, ZHAO G Y, ZHAO Y Y, ZHAO M S, TANG J W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel,2017,203:924−931. doi: 10.1016/j.fuel.2017.04.112
    [3] CONG X S, ZONG Z M, WEI Z H. Enrichment and Identification of Arylhopanes from Shengli Lignite[J]. Energy Fuels,2014,28:6745−6748. doi: 10.1021/ef501105n
    [4] CONG X S, ZONG Z M, ZHOU Y, LI M, WANG W L, LI F G, ZHOU J, FAN X, ZHANG Y P, WEI X Y. Isolation and Identification of 3-Ethyl-8-methyl-2, 3-dihydro-1H-cyclopenta[a]chrysene from Shengli Lignite[J]. Energy Fuels,2014,28(10):6694−6697. doi: 10.1021/ef402403y
    [5] MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem. Rev,2014,114(3):1637−72. doi: 10.1021/cr4002885
    [6] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报,2019,70(4):1522−1531.

    FENG Wei, GAO Hong-feng, WANG Gui, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. J Chem Ind Eng,2019,70(4):1522−1531.
    [7] 葛涛, WANG Meng, 李芬, 闵凡飞, 张明旭. 高阳炼焦煤碳、氧结构研究与光谱学表征[J]. 煤炭学报,2020,. doi: 10.13225/j.cnki.jccs.2019.1693

    GE Tao, WANG Meng, LI Fen, MIN Fan-fei, ZHANG Mingxu. Study and Characterize of Carbon & Oxygen Structure of Gaoyang Coking Coal[J]. J China Coal Soc,2020,. doi: 10.13225/j.cnki.jccs.2019.1693
    [8] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel,2015,153(1):176−182.
    [9] 张帅, 马汝嘉, 刘路, 张浩, 刘钦甫. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009

    ZHANG Shuai, MA Ru-jia, LIU Lu, ZHANG Hao, LIU Qin-fu. Molecular structure characteristics and model construction of anthracite in Jarud[J]. Coal Geol Explor,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009
    [10] MATHEWS J P, CHAFFEE A L. The molecular representations of coal - A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [11] LIN H L, LI K J, ZHANG X W, WANG H X. Structure Characterization and Model Construction of Indonesian Brown Coal[J]. Energy Fuels,2016,30(5):3809−3814. doi: 10.1021/acs.energyfuels.5b02696
    [12] LIN H L, LIAN J, LIU Y P, XUE Y, YAN S, HAN S, WEI W. Comprehensive study of structure model, pyrolysis and liquefaction behaviour of Heidaigou lignite and its liquefied oil[J]. Fuel,2019,240(15):84−91.
    [13] 相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002

    XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002
    [14] FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09[CP]. Wallingford CT: Gaussian Inc., 2009.
    [15] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc.,2008,120:215−241. doi: 10.1007/s00214-007-0310-x
    [16] 王永刚, 周剑林, 陈艳巨, 胡秀秀, 张书, 林雄超. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报,2013,41(12):1422−1426.

    Wang Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol,2013,41(12):1422−1426.
    [17] 陈丽诗, 王岚岚, 潘铁英, 周扬, 张媛媛, 张德详. 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001

    CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. J Fuel Chem Technol,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001
    [18] DING D, LIU G, FU B. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state 13C NMR[J]. Fuel,2019,245(1):174−180.
    [19] JING Z H, SANDRA R, EKATERINA S, LI M R, WOOD B. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. Int J Coal Geol,2019,201:1−13. doi: 10.1016/j.coal.2018.11.017
    [20] OKOLO G N, NEOMAGUS H W J P, EVERSON R C, ROBERTS M J, BUNT J R, SAKUROVS R, MATHEWS J P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel,2015,158(15):779−792.
    [21] WANG Y G, WEI X Y, WANG S K, LI Z K, LI P. Structural evaluation of Xiaolongtan lignite by direct chac racterization and pyrolytic analysis[J]. Fuel Process Technol,2016,144:248−254. doi: 10.1016/j.fuproc.2015.12.034
    [22] JIANG J Y, YANG W H, CHENG Y P, LIU Z D, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [23] TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FTIR study on structural changes of different–rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS 2 mixed solvent[J]. Fuel Process Technol,2016,154:210−218. doi: 10.1016/j.fuproc.2016.08.035
    [24] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报,2014,42(002):129−137.

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol,2014,42(002):129−137.
    [25] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LIU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrol,2013,100:75−80. doi: 10.1016/j.jaap.2012.11.021
    [26] GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel,2009,88(1):139−144. doi: 10.1016/j.fuel.2008.07.027
    [27] LIU F R, LI W, GUO H Q, LI B Q, BAI Z Q, HU R S. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface[J]. J Fuel Chem Technol,2011,39(2):81−84. doi: 10.1016/S1872-5813(11)60011-X
    [28] 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析,2017,37(8):2146−2152.

    GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR Spectroscopy Characterization about the Structure of Coking Coal in Xinyang[J]. Spectrosc Spect Anal,2017,37(8):2146−2152.
    [29] LIU F J, WEI X Y, GUI J, LI P, WANG Y G, LI W T, ZONG Z M, FAN X, ZHAO Y P. Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation[J]. Fuel Process Technol,2014,126:199−206. doi: 10.1016/j.fuproc.2014.05.004
    [30] BUCKLEY A N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy[J]. Fuel Process Technol,1994,38(3):165−179. doi: 10.1016/0378-3820(94)90046-9
    [31] KELEMEN S R, AFEWORKI M, GORBATY M L, COHEN A D. Characterization of Organically Bound Oxygen Forms in Lignites, Peats, and Pyrolyzed Peats by X-ray Photoelectron Spectroscopy (XPS) and Solid-State 13C NMR Methods[J]. Energy Fuel,2002,16(6):1450−1462. doi: 10.1021/ef020050k
    [32] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel,2004,83:259−265. doi: 10.1016/j.fuel.2003.08.004
    [33] GENG W H, KUMABE Y, NAKAJIMA T, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel,2009,88(4):644−649. doi: 10.1016/j.fuel.2008.09.025
    [34] YANG Y C, TAO X X, HE H, XU N, TANG L F, WANG S W, GUO J F, CHEN L, YANG Z. X-ray photoelectron spectroscopy study on the chemical forms of S, C and O in coal before and after microwave desulphurization[J]. Int J Oil Gas Coal T,2017,15(3):267−286. doi: 10.1504/IJOGCT.2017.084444
    [35] SHI K Y, GUI X H, TAO X X, LONG J, JI Y H. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy Fuels,2015,29(6):3566−3572. doi: 10.1021/ef502859r
    [36] NOMURA M, ARTOK L, MURATA S, YAMAMOTO A, HAMA H, GAO H, KIDENA K. Structural Evaluation of Zao Zhuang Coal[J]. Energy Fuels,1998,12(3):512−23. doi: 10.1021/ef9701448
    [37] 秦志宏, 卜良辉, 李祥. 基于炼焦煤族组成和结构参数的焦炭质量预测模型及其成焦机理[J]. 燃料化学学报,2018,046(012):1409−1422.

    QIN Zhi-hong, BU Liang-hui, LI Xiang. Prediction model for coke quality and mechanism based on coking coal composition and structure parameters[J]. J Fuel Chem Technol,2018,046(012):1409−1422.
    [38] 葛涛, 李洋, Wang Meng, 李芬, 张明旭. 山西高硫气肥煤结构表征与分子模型构建[J]. 光谱学与光谱分析,2020,40(11):3373−3378.

    GE Tao, LI Yang, WANG Meng, LI Fen, ZHANG Ming-xu. Structural Characterization and Molecular Model Construction of Gas-Fat Coal With High Sulfur in Shanxi[J]. Spectrosc Spect Anal,2020,40(11):3373−3378.
    [39] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报,2020,71(4):1802−1811.

    ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XIANG Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. J Chem Ind Eng,2020,71(4):1802−1811.
    [40] 李壮楣, 王艳美, 李平, 李和平, 白红存, 郭庆杰. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报,2018,69(5):2208−2216.

    LI Zhuang-mei, WANG Yan-mei, LI Ping, LI He-ping, BAI Hong-cun, GUO Qing-jie. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. J Chem Ind Eng,2018,69(5):2208−2216.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回