留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质不同部位制备炭基催化剂及其电催化氧还原性能

王可欣 杨改秀 孙永明 李金平 王春龙

王可欣, 杨改秀, 孙永明, 李金平, 王春龙. 生物质不同部位制备炭基催化剂及其电催化氧还原性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021034
引用本文: 王可欣, 杨改秀, 孙永明, 李金平, 王春龙. 生物质不同部位制备炭基催化剂及其电催化氧还原性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021034
Wan Kexin, Yang Gaixiu, Sun Yongming, Li Jinping, Wang Chunlong. Preparation and investigation of carbon-based electrocatalysts from different parts of biomass for oxygen reduction reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021034
Citation: Wan Kexin, Yang Gaixiu, Sun Yongming, Li Jinping, Wang Chunlong. Preparation and investigation of carbon-based electrocatalysts from different parts of biomass for oxygen reduction reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021034

生物质不同部位制备炭基催化剂及其电催化氧还原性能

doi: 10.19906/j.cnki.JFCT.2021034
基金项目: Ministry of Science and Technology of the People’s Republic of China国家重点研发计划项目(2018YFE0111000);National Natural Science Foundation of China 国家自然科学基金青年基金(51806224);Guangdong Basic and Applied Basic Research Foundation (2019A1515011971) 广东省自然科学基金面上项目
详细信息
    作者简介:

    王可欣:wangkexin0904@qq.com

    通讯作者:

    Tel: 13519620709; E-mail: 695200610@qq.com

  • 中图分类号: TM911.4; O643.36

Preparation and investigation of carbon-based electrocatalysts from different parts of biomass for oxygen reduction reaction

  • 摘要: 炭基氧还原催化剂因其具有成本低、导电性能好,结构可调控、电化学稳定性好等特点在电催化氧还原领域应用广泛。本文以不同结构(叶、茎)的生物质(苋菜)为原料,通过一步热解法制备炭材料,结合X射线衍射仪、拉曼光谱、X射线光电子能谱以及线性扫描伏安法等物理化学特性分析所制备材料的电催化氧还原反应性能,结果表明:相对于茎源炭,叶源炭(比表面积为732.31 m2g−1)的杂原子掺杂更为丰富,特别是其较高的P、S和N共掺杂,尤其是石墨氮和吡啶氮的总含量明显提升。这也使得其在较宽的pH区间(酸性、中性、碱性溶液)表现出优异的氧还原活性(起始还原电位:0.529 V,0.215 V,−0.046 V(vs. SCE))。这表明生物质原料自身特性对热解后炭材料的组成、形貌和结构有较大影响,叶源生物炭因其具有更为丰富的杂原子掺杂使得其在催化燃料电池氧还原领域具有广阔的应用前景。
  • 图  1  两种生物炭XRD分析结果(a);Raman分析结果(b)

    Figure  1.  XRD patterns (a) and Raman spectrum (b) of two biomass based carbon materials

    图  2  ALC(a)和ASC(b)的XPS N1s分峰图谱以及ALC的P2p(c)和S2p(d)分峰图谱

    Figure  2.  XPS spectra and deconvolution of the N1s of the ALC (a) and ASC (b), P2p (c) and S2p (d) spectra of the ALC

    图  3  ALC和ASC表面的SEM/EDS能谱

    Figure  3.  EDS spectrum of ALC and ASC surface

    图  4  AL、AS、ALC和ASC的红外光谱图

    Figure  4.  FT-IR spectrum of AL,AS,ALC and ASC

    图  5  ALC(a)和ASC(b)的SEM图片

    Figure  5.  SEM images of the ALC (a) and ASC (b)

    图  6  ALC和ASC的N2等温吸附脱附曲线(a)和孔径分布图(b)

    Figure  6.  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of the ALC and ASC

    图  7  ALC和ASC在O2饱和的0.5 M H2SO4(a)、50 mM PBS(b)和0.1 M KOH(c)溶液中的1600rpm LSV曲线以及在50 mM PBS溶液中的EIS测试曲线

    Figure  7.  1600rpm LSV in O2-saturated 0.5 M H2SO4 (a), 50 mM PBS (b) and 0.1 M KOH (c) and EIS curves in 50 mM PBS(d) of the ALC and ASC

    图  8  ALC和ASC在O2饱和0.1 M KOH溶液中不同转速的LSV图(a、b)及K-L图(c、d)

    Figure  8.  LSV of the ALC and ASC in O2-saturated 0.1 M KOH at different rotation rates (a,b)and their Koutecky-Levich plots (c,d)

    表  1  元素分析和XPS分析

    Table  1.   Elemental and XPS analysis of the samples

    Elemental analysis(wt%)XPS analysis(at%)
    SampleCHNOCNO
    AL38.175.445.9450.4553.345.8040.86
    AS29.774.455.7959.9948.895.4345.68
    ALC61.241.533.6333.6072.685.2022.11
    ASC80.542.032.2215.2170.313.8927.22
    下载: 导出CSV

    表  2  ALC和ASC的比表面积及孔容参数

    Table  2.   Pore parameters of the ALC and ASC

    SampleSBET (m2g−1)Smicro(m2g−1)Vtotal (cm3g−1)Vmirco (cm3g−1)
    ALC732.3504.70.510.27
    ASC2749.31221.21.610.69
    下载: 导出CSV
  • [1] YANG G, WANG Y, XU L, LI Y, LI L, SUN Y, YUAN Z, TANG Y. Pd nanochains: Controlled synthesis by lysine and application in microbial fuel cells[J]. Chem Eng J,2020,379(1):122230.
    [2] WANG X H, GONG X B, PENG L, YANG Z, LIU Y. Tubular nitrogen-doped carbon materials derived from green foxtail as a metal-free electrocatalyst in microbial fuel cells for efficient electron generation[J]. Bioelectrochemistry,2019,127:104−112. doi: 10.1016/j.bioelechem.2019.01.009
    [3] LIU X J, ZHOU Y C, ZHOU W J, LI L G, HUANG S B, CHEN S W. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction[J]. Nanoscale,2015,7(14):6136−6142. doi: 10.1039/C5NR00013K
    [4] LIU Z W, PENG F, WANG H J, YU H, ZHENG W X, YANG J A. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O-2 Reduction in an Alkaline Medium[J]. Angew Chem Int Edit,2011,50(14):3257−3261. doi: 10.1002/anie.201006768
    [5] LU Z S, LI S, LIU C, HE C Z, YANG X W, MA D W, XU G L, YANG Z X. Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: a DFT-D study[J]. Rsc Adv,2017,7(33):20398−20405. doi: 10.1039/C7RA00632B
    [6] ZHENG F-Y, LI R, GE S, XU W-R, ZHANG Y. Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells[J]. J Power Sources,2020,446:227356. doi: 10.1016/j.jpowsour.2019.227356
    [7] SONG M Y, PARK H Y, YANG D S, BHATTACHARJYA D, YU J S. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. ChemSusChem,2014,7(6):1755−1763. doi: 10.1002/cssc.201400049
    [8] XIE L J, SUN G H, SU F Y, GUO X Q, KONG Q Q, LI X M, HUANG X H, WAN L, SONG W, LI K X, LV C X, CHEN C M. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. J Mater Chem A,2016,4(5):1637−1646. doi: 10.1039/C5TA09043A
    [9] ZHAO J, LI Y J, WANG G L, WEI T, LIU Z, CHENG K, YE K, ZHU K, CAO D X, FAN Z J. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes[J]. J Mater Chem A,2017,5(44):23085−93. doi: 10.1039/C7TA07010A
    [10] CHEN M D, KANG X Y, WUMAIER T, DOU J Q, GAO B, HAN Y, XU G Q, LIU Z Q, ZHANG L. Preparation of activated carbon from cotton stalk and its application in supercapacitor[J]. J Solid State Electrochem,2013,17(4):1005−1012. doi: 10.1007/s10008-012-1946-6
    [11] PAN F P, CAO Z Y, ZHAO Q P, LIANG H Y, ZHANG J Y. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. J Power Sources,2014,272:8−15. doi: 10.1016/j.jpowsour.2014.07.180
    [12] WANG H, XU Z W, KOHANDEHGHAN A, LI Z, CUI K, TAN X H, STEPHENSON T J, KING'ONDU C K, HOLT C M B, OLSEN B C, TAK J K, HARFIELD D, ANYIA A O, MITLIN D. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano,2013,7(6):5131−5141. doi: 10.1021/nn400731g
    [13] CHEN P, WANG L K, WANG G, GAO M R, GE J, YUAN W J, SHEN Y H, XIE A J, YU S H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction[J]. Energy Environ Sci,2014,7(12):4095−4103. doi: 10.1039/C4EE02531H
    [14] LI J, WANG S, REN Y, REN Z, QIU Y, YU J. Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media[J]. Electrochim Acta,2014,149:56−64. doi: 10.1016/j.electacta.2014.10.089
    [15] ESSANDOH M, KUNWAR B, PITTMAN C U, MOHAN D, MLSNA T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chem Eng J,2015,265:219−27. doi: 10.1016/j.cej.2014.12.006
    [16] 柴明艳. 红苋菜提取物抗氧化活性的研究[J]. 食品研究与开发,2016,37(12):19−23. doi: 10.3969/j.issn.1005-6521.2016.12.005

    CHAI M Y. Antioxidant Activity of Extracts from Amaranthus tricolor L.[J]. Food Res Dev,2016,37(12):19−23. doi: 10.3969/j.issn.1005-6521.2016.12.005
    [17] 范晓旭, 杨春花, 周美丽, 杨伟. ICP-MS测定红苋菜根、茎、叶中9种元素含量[J]. 现代食品,2019(17):150−152, 156.

    FAN X X, YANG C H, ZHOU M L, YANG W. Detection of 9 Kinds of Elements in Root, Stem and Leaf of Red Spinach by ICP-MS[J]. Mod Food,2019(17):150−152, 156.
    [18] JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and Phosphorus Dual-Doped Hierarchical Porous Carbon Foams as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J]. Chem-Eur J,2014,20(11):3106−3112. doi: 10.1002/chem.201304561
    [19] MENG K, LIU Q, HUANG Y Y, WANG Y B. Facile synthesis of nitrogen and fluorine co-doped carbon materials as efficient electrocatalysts for oxygen reduction reactions in air-cathode microbial fuel cells[J]. J Mater Chem A,2015,3(13):6873−6877. doi: 10.1039/C4TA06500J
    [20] DIAO R, WANG C, ZHU X F, ZHU X F. Influence of carbonization degree of walnut shell char on pore structure and combustion characteristics[J]. J Fuel Chem Technol,2019,47(10):1173−80.
    [21] QI J W, ZHANG W D, XU L. Solvent-Free Mechanochemical Preparation of Hierarchically Porous Carbon for Supercapacitor and Oxygen Reduction Reaction[J]. Chem-Eur J,2018,24(68):18097−18105. doi: 10.1002/chem.201804302
    [22] PENG C, YAN X B, WANG R T, LANG J W, OU Y J, XUE Q J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochim Acta,2013,87:401−408. doi: 10.1016/j.electacta.2012.09.082
    [23] QIANG L L, HU Z G, LI Z M, YANG Y Y, WANG X T, ZHOU Y, ZHANG X Y, WANG W B, WANG Q. Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor[J]. J Porous Mat,2019,26(4):1217−1225. doi: 10.1007/s10934-019-00723-z
    [24] LAI L F, POTTS J R, ZHAN D, WANG L, POH C K, TANG C H, GONG H, SHEN Z X, JIANYI L Y, RUOFF R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy Environ Sci,2012,5(7):7936−7942. doi: 10.1039/c2ee21802j
    [25] SUN T T, XU L B, LI S Y, CHAI W X, HUANG Y, YAN Y S, CHEN J F. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction[J]. Appl Catal B-Environ,2016,193:1−8. doi: 10.1016/j.apcatb.2016.04.006
    [26] TAO X, ZHANG Q, LI Y, LV X, MA D, WANG H-G. N, P, S tri-doped hollow carbon nanosphere as a high-efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. Appl Surf Sci,2019,490:47−55. doi: 10.1016/j.apsusc.2019.06.076
    [27] SUN D, BAN R, ZHANG P-H, WU G-H, ZHANG J-R, ZHU J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon,2013,64:424−34. doi: 10.1016/j.carbon.2013.07.095
    [28] WANG X W, SUN G Z, ROUTH P, KIM D H, HUANG W, CHEN P. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem Soc Rev,2014,43(20):7067−7098. doi: 10.1039/C4CS00141A
    [29] ZHANG L P, NIU J B, LI M T, XIA Z H. Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells[J]. J Phys Chem C,2014,118(7):3545−3553. doi: 10.1021/jp410501u
    [30] HE D L, ZHAO W, LI P, SUN S, TAN Q W, HAN K, LIU L, LIU L, QU X H. Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and oxygen reduction reaction[J]. J Alloy Compd,2019,773:11−20. doi: 10.1016/j.jallcom.2018.09.141
    [31] YU Y N, WANG M Q, BAO S J. Biomass-derived synthesis of nitrogen and phosphorus Co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction[J]. J Solid State Electrochem,2017,21(1):103−110. doi: 10.1007/s10008-016-3346-9
    [32] WEI X J, LI Y B, GAO S Y. Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes[J]. J Mater Chem A,2017,5(1):181−188. doi: 10.1039/C6TA07826E
    [33] HOU H Y, YU C Y, LIU X X, YAO Y, LIAO Q S, DAI Z P, LI D D. Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode[J]. Surf Innov,2018,6(3):159−166. doi: 10.1680/jsuin.17.00068
    [34] SONG Y P, ZHAN H, ZHUANG X Z, YIN X L, WU C Z. Synergistic Characteristics and Capabilities of Co-hydrothermal Carbonization of Sewage Sludge/Lignite Mixtures[J]. Energy Fuels,2019,33(9):8735−8745. doi: 10.1021/acs.energyfuels.9b01766
    [35] SUN M, DAVENPORT D, LIU H J, QU J H, ELIMELECH M, LI J H. Highly efficient and sustainable non-precious-metal Fe-N-C electrocatalysts for the oxygen reduction reaction[J]. J Mater Chem A,2018,6(6):2527−2539. doi: 10.1039/C7TA09187G
    [36] WU J, ZHENG X J, JIN C, TIAN J H, YANG R Z. Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction[J]. Carbon,2015,92:327−338. doi: 10.1016/j.carbon.2015.05.013
    [37] DONG H, YU H, YU H, GAO N, WANG X. Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells[J]. J Power Sources,2013,232:132−138. doi: 10.1016/j.jpowsour.2013.01.036
    [38] XU B, YUE S F, SUI Z Y, ZHANG X T, HOU S S, CAO G P, YANG Y S. What is the choice for supercapacitors: graphene or graphene oxide?[J]. Energy Environ Sci,2011,4(8):2826−30. doi: 10.1039/c1ee01198g
    [39] LIU J, JIAO M, LU L, BARKHOLTZ H M, LI Y, WANG Y, JIANG L, WU Z, LIU D J, ZHUANG L. High performance platinum single atom electrocatalyst for oxygen reduction reaction[J]. Nat Commun,2017,8:15938. doi: 10.1038/ncomms15938
    [40] LIANG J, JIAO Y, JARONIEC M, QIAO S Z. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance[J]. Angew Chem Int Edit,2012,51(46):11496−11500. doi: 10.1002/anie.201206720
    [41] CHOI C H, PARK S H, WOO S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon[J]. J Mater Chem,2012,22(24):12107−12115. doi: 10.1039/c2jm31079a
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回