留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高耐久活性二元合金PtTi薄膜电催化剂

刘广权 彭丽萍 樊龙 符亚军 王进 曹林洪 吴卫东

刘广权, 彭丽萍, 樊龙, 符亚军, 王进, 曹林洪, 吴卫东. 高耐久活性二元合金PtTi薄膜电催化剂[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021037
引用本文: 刘广权, 彭丽萍, 樊龙, 符亚军, 王进, 曹林洪, 吴卫东. 高耐久活性二元合金PtTi薄膜电催化剂[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021037
Liu Guang-quan, Peng Li-ping, Fan Long, Fu Ya-jun, Wang jin, Cao Lin-hong, Wu Wei-dong. High Durable Activity Binary Alloy Pt-Ti Thin Film Electrocatalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021037
Citation: Liu Guang-quan, Peng Li-ping, Fan Long, Fu Ya-jun, Wang jin, Cao Lin-hong, Wu Wei-dong. High Durable Activity Binary Alloy Pt-Ti Thin Film Electrocatalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021037

高耐久活性二元合金PtTi薄膜电催化剂

doi: 10.19906/j.cnki.JFCT.2021037
基金项目: 中国工程物理研究院激光聚变研究中心等离子体物理重点实验室(ZY2019-03)
详细信息
    作者简介:

    刘广权:liuguangquanvip@163.com

    通讯作者:

    Tel: 15883789962, E-mail: wuweidongding@163.com

  • 中图分类号: O646

High Durable Activity Binary Alloy Pt-Ti Thin Film Electrocatalyst

Funds: Research Center of Laser Fusion, China Academy of Engineering Physics Key Laboratory of Plasma Physics (ZY2019-03)
More Information
  • 摘要: 以超纯靶材为原料,采用超高真空双靶共溅射系统制备出粒径分布为8.3~12.5 nm,Pt负载量为0.1 mg/cm2的PtTi作为催化剂。利用X射线衍射仪(XRD)、扫描电镜(SEM)、耐用性压力测试(DST)和计时电流(I-t)方法对所制备的PtTi催化剂结构、催化活性及耐久性进行研究,并探究Ti添加量对Pt基合金催化剂电催化性能的影响。结果表明,其最高的电化学活性面积(ECSA)为185.4 m2/g,且经600 ℃原位退火后,直接乙醇催化氧化峰电流密度为1448 A/g,1100 s的稳定电流密度值为147.47 A/g,3000次耐久性压力测试的衰减率为8.6%。本工作研究的催化电极具有优异的催化活性和高稳定性的特性,它可应用于直接乙醇燃料电池(Direct ethanol fuel cell, DEFCs)电极的使用,具有极高的应用潜力。
  • 图  1  在碳纸上共溅射沉积样品的SEM图Pt恒定功率30 W,Ti溅射功率分别为(b)10 W,(c)20 W,(d)30 W,(e)40 W和(f)50 W;(a)为碳纸

    Figure  1.  SEM images of co-sputter deposited samples on carbon paper. Pt constant power 30W, Ti sputtering power were (b) 10 W, (c) 20 W, (d) 30 W, (e) 40 W and (f) 50 W; (a) carbon paper

    图  2  在碳纸上共溅射沉积样品原位退火的SEM图Pt功率30 W,Ti功率20 W,(a)500 ℃(b)600 ℃(c)700 ℃

    Figure  2.  SEM image of in-situ annealing of co-sputter deposited samples on carbon paper Pt power 30 W, Ti power 20 W, (a) 500 ℃ (b) 600 ℃ (c) 700 ℃

    图  3  在碳纸上共溅射沉积5组样品的XRD图

    Figure  3.  XRD patterns of 5 samples co-sputter deposited on carbon paper

    图  4  在碳纸上共溅射沉积并原位退火后3组样品的XRD图

    Figure  4.  XRD patterns of 3 sets of samples after co-sputter deposition on carbon paper and in-situ annealing

    图  5  在碳纸上共溅射沉积2#样品的XPS分析

    Figure  5.  XPS analysis of sample 2# co-sputter deposited on carbon paper

    图  6  薄膜Pt/C样品和商用Pt/C的CV图

    Figure  6.  CV diagrams of thin film Pt/C samples and commercial Pt/C

    图  7  在碳纸上共溅射沉积样品的CV图Ⅱ-1#,Ⅲ-2#,Ⅳ-3#,Ⅴ-4#和Ⅵ-5#;Ⅰ为五样品初始CV图

    Figure  7.  CV diagrams of co-sputter deposited samples on carbon paper Ⅱ-1#, Ⅲ-2#, Ⅳ-3#, Ⅴ-4#, and Ⅵ-5#; Ⅰ is the initial CV diagram of five samples

    图  8  在碳纸上共溅射沉积样品原位退火后3组样品的CV图

    Figure  8.  CV diagrams of three groups of samples after in-situ annealing of co-sputter deposited samples on carbon paper

    图  9  薄膜Pt/C和商用Pt/C在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的CV曲线

    Figure  9.  CV curve of thin film Pt/C and commercial Pt/C in 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 solution

    图  10  (Ⅰ)碳纸上共溅射沉积5组催化剂在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的循环伏安曲线;(Ⅱ)2#样品经不同温度原位退火后在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的循环伏安曲线

    Figure  10.  (Ⅰ) Cyclic voltammetry curves of 5 groups of catalysts co-sputtered deposited on carbon paper in 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 solution; (Ⅱ) Sample 2 is annealed in situ at different temperatures. Cyclic voltammetry curve in mol/L CH3CH2OH + 0.5 mol/L H2SO4 solution

    图  11  薄膜Pt/C和商用Pt/C在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的 I-t 曲线

    Figure  11.  I-t curve of thin film Pt/C and commercial Pt/C in 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 solution

    图  12  (a)五组催化剂在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的 I-t 曲线;(b)不同温度原位退火后三组催化剂在 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 溶液中的 I-t 曲线

    Figure  12.  (a) I-t curve of 5 groups of catalysts in 1 mol/L CH3CH2OH + 0.5 mol/L H2SO4 solution; (b) After in-situ annealing at different temperatures, the 3 groups of catalysts are at 1 mol/L CH3CH2OH + 0.5 mol/L I-t curve in H2SO4 solution

    表  1  不同条件的 8 组催化剂

    Table  1.   Under different conditions 8 groups of catalysts

    样品1#2#3#4#5#6#7#8#
    Pt功率(W)3030303030303030
    Ti功率(W)1020304050202020
    退火温度(℃)500600700
    Pt:Ti9:179:2168:3257:4317:1379:2179:2179:21
    下载: 导出CSV
  • [1] LAMY C, BELGSIR E M, LÉGER. J M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC)[J]. J Appl Electrochem,2001,31(7):799−809. doi: 10.1023/A:1017587310150
    [2] PRAKASH P P, GHADGE S D, JAMPANI H P, KANCHAN D M, BHARAT G, MURUGAVEL S P, KUMTA P N. Active and robust novel bilayer photoanode architectures for hydrogen generation via direct non-electric bias induced photo-electrochemical water splitting[J]. Int J Hydrog Energy,2018,131(43):58−76.
    [3] RIBEIRO J, ANJOS D M D, KOKOH K B, COUTANCEAU C, LÉGER J M, OLIVI P, ANDRADE A R D, TREMILIOSI-FILHO G. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell[J]. Electrochim Acta,2007,52(24):6997−7006. doi: 10.1016/j.electacta.2007.05.017
    [4] YE W, SHOUZHONG Z, WEN-BIN C. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials[J]. Catalysts,2015,5(3):1507−1534. doi: 10.3390/catal5031507
    [5] ZHANG J, XING C, SHI F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation[J]. Int J Hydrogen Energy,2020,45(6):291−301.
    [6] LAMY C, ROUSSEAU S, BELGSIR E M, COUTANCEAU C, LÉGER J M. Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts[J]. Electrochim Acta,2004,49(22-23):3901−3908. doi: 10.1016/j.electacta.2004.01.078
    [7] VINCENT I, BESSARABOV D. Low-cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renew Sustain Energy Rev,2018,81(1):690−704.
    [8] GUO S, DONG S, WANG E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano,2009,4(1):547−555.
    [9] SCOFIELD M E, KOENIGSMANN C, WANG L, WONG S S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction[J]. Energy Environ Sci,2014,8(1):350−363.
    [10] RUDI S, GAN L, CUI C, GLIECH M, STRASSER P. Electrochemical dealloying of bimetallic ORR nanoparticle catalysts at constant electrode potentials[J]. J Electrochem Soc,2015,162(4):F403−F409. doi: 10.1149/2.0621504jes
    [11] ERINI N, KRAUSE P, GLIECH M, YANG R, HUANG Y, STRASSER P. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation[J]. J Power Sources,2015,294(oct. 30):299−304.
    [12] RIZO, RUBEN, SEBASTIAN, LÁZARO M J, PASTOR E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media[J]. Appl Catal B-Environ,2017,200(2):246−254.
    [13] ANTOLINI E, COLMATI F, GONZALEZ E R. Ethanol oxidation on carbon-supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: Effect of the alloy phase characteristics[J]. J Power Sources,2009,193(2):555−561. doi: 10.1016/j.jpowsour.2009.04.039
    [14] SPENDELOW J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Phys Chem Chem Phys,2007,9(21):2654−2675. doi: 10.1039/b703315j
    [15] VINCENT I, KRUGER A, BESSARABOV D. Development of an efficient mem-brane electrode assembly for low-cost hydrogen production by anion exchange membrane electrolysis[J]. Int J Hydrog Energy,2017,42(107):52−61.
    [16] VALERIO NETO, EDMUNDO S, GOMES, SALAZAR-BANDA G R, EGUILUZ K I B. Pt and Pt-Rh nanowires supported on carbon and SnO2: Sb nanoparticles for ethanol electrochemical oxidation in acidic media[J]. Int J Hydrog Energy,2018,43(1):178−188. doi: 10.1016/j.ijhydene.2017.11.014
    [17] KATTEL S, DUAN Z, WANG G. Density functional theory study of an oxygen reduction reaction on a Pt3Ti alloy electrocatalyst[J]. J Phys Chem C,2013,117(14):7107−7113. doi: 10.1021/jp400158r
    [18] ZHOU Q, XU C. Stratified nanoporous PtTi alloys for hydrolysis of ammonia borane[J]. J. Colloid Interface Sci,2017,496:235−242. doi: 10.1016/j.jcis.2017.02.030
    [19] HOGARTH M P, RALPH T R. Catalysis for low-temperature fuel cells[J]. Platin Met Rev,2002,46(4):146−164.
    [20] OZTURK O, OZDEMIR O K, ULUSOY I, AHSEN A S, SLAUCHEVA E. Effect of Ti sublayer on the ORR catalytic efficiency of dc magnetron sputtered thin Pt films[J]. Int J Hydrog Energy,2010,35(10):4466−4473. doi: 10.1016/j.ijhydene.2010.02.077
    [21] SIEVERS G, MUELLER S, QUADE A, STEFFEN F, JAKUBITH S, KRUTH A, BRUESER V. Mesoporous Pt−Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering[J]. J Power Sources,2014,268(dec. 5):255−260.
    [22] OSTROVERKH A, DUBAU M, JOHÁNEK V, VÁCLAV M, MÍD, B, VELTRUSKÁ K, OSTROVERKH Y, FIALA R, MATOLÍN V. Efficient Pt‐C MEA for pemfc with low platinum content prepared by magnetron sputtering[J]. Fuel Cells,2018,18(1):51−56. doi: 10.1002/fuce.201700137
    [23] MOUGENOT M, CAILLARD A, BRAULT P, BARANTON S, COUTANCEAU C. High-performance plasma sputtered PdPt fuel cell electrodes with ultra-low loading[J]. Int J Hydrog Energy,2011,36(14):8429−8434. doi: 10.1016/j.ijhydene.2011.04.080
    [24] LI Y H, HONG J R. Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor[J]. ACS Appl Energy Mater,2018,211(84):3−53.
    [25] SEGER B, KAMAT P V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells[J]. J Phys Chem C,2009,113(19):7990−7995. doi: 10.1021/jp900360k
    [26] HSU R S, HIGGINS D, CHEN Z. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells[J]. Nanotechnology,2010,21(16):165705. doi: 10.1088/0957-4484/21/16/165705
    [27] BELLOSTA VON COLBE J, ARES J-R, BARALE J, BARICCO M, BUCKLEY C, CAPURSO G. Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives[J]. Int J Hydrog Energy,2019,44(7):780−808.
    [28] PHILLIPS R, DUNNILL C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Advances,2016,100(6):43−51.
    [29] MOHSIN M, RASHEED A K, SAIDUR R. Economic viability and production capacity of wind-generated renewable hydrogen[J]. Int. J. Hydrog. Energy,2018,26(43):21−30.
    [30] OUMA C N, MODISHA P M, BESSARABOV D. Catalytic dehydrogenation of the liquid organic hydrogen carrier octa hydro indole on Pt (111) surface: ab initio insights from density functional theory calculations[J]. Appl. Surf. Sci,2019,471(10):34−40.
    [31] SHEN Y, ZHANG M Z, XIAO K, XI J. Synthesis of Pt, PtRh, and PtRhNi alloys supported by pristine graphene nanosheets for ethanol electrooxidation[J]. Chemcatchem,2014,6(11):3254−3261. doi: 10.1002/cctc.201402629
    [32] CELEK M S, PINARBAS A. Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas, and hydrogen as fuels[J]. Int J Hydrog Energy,2018,43(1):194−207.
    [33] DU PREEZ S P, JONES D R, BESSARABOV D G, FALCH A, MOTA DAS NEVES QUARESMA C, DUNNILL C W. Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion[J]. Int J Hydrog Energy,2019,44(27):094−106.
    [34] QING LV, XIAO Y, YIN M, GE J, XING W, LIU C. Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation[J]. Electrochim Acta,2014,.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回