Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue
-
摘要: 本论文以固废煤矸石为主要原料,通过对其进行破碎、球磨、酸洗处理、造粒成球和煅烧得到煤矸石载体,接着经液相负载与原位碳热还原制得Fe3O4负载的陶瓷复合微波吸收材料,并且研究了Fe3O4负载量对复合材料结构及电磁性能的影响规律。结果表明,当焙烧温度为600 °C、前驱体溶液浓度为1.25−1.5 M时,复合材料的微波吸收性能最佳,涂层厚度为2 mm时的最低反射损耗值和有效吸收带宽分别可达−20.1 dB和4.7 GHz,主要归因于复合材料良好的阻抗匹配与衰减特性。本实验制备流程简单,为固废煤矸石的回收利用提供了新思路,同时也可以降低微波吸收材料的生产成本。Abstract: The Fe3O4 loaded ceramic composite microwave absorbents were successfully prepared by recycling the solid waste coal gangue. First, the coal gangue based matrix was obtained by crushing, ball-milling, acid pickling, granulation and sintering process, and then the subsequent experiment involved loading precursor solution as well as in-situ carbothermal reduction. Moreover, the influence of Fe3O4 loading content on the microstructure and electromagnetic performance was also investigated. It was founded that the ceramic composites exhibited excellent microwave absorption when the reduction temperature kept 600 °C and the concentration of precursor solution was 1.25−1.5 M, under which the minimum reflection loss value reached −20.1 dB and the effective absorption bandwidth kept 4.7 GHz as the coating thicknesses was 1.5 mm. This was attributed to the better impedance match and attenuation characteristic. The simple technological process provided in this work could offer a novel method for the recycling of coal gangue, and was beneficial for the low-cost of microwave absorbents.
-
Key words:
- Coal gangue /
- Composite /
- Impedance matching /
- Microwave absorption
-
表 1 文献报道的负载Fe3O4的复合吸波材料性能
Table 1. Microwave absorption of some reported composites loaded with Fe3O4
-
[1] SHAHZAD F, ALHABEB M, HATTER C B, ANASORI B, HONG M S, KOO C M, GOGOTSI Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137−1140. doi: 10.1126/science.aag2421 [2] ZHANG M, LI Z J, WANG T, DING S Q, SONG G Q, ZHAO J, MENG A, YU H Y, LI Q D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites[J]. Chem Eng J,2019,362:619−627. doi: 10.1016/j.cej.2019.01.039 [3] CHENG Y, LI Z Y, LI Y, DAI S S, JI G B, ZHAO H Q, CAO, J M, DU Y W. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon,2018,127:643−652. doi: 10.1016/j.carbon.2017.11.055 [4] ZHANG Y, HUANG Y, ZHANG T F, CHANG H C, XIAO P S, CHEN H H, HUANG Z Y, CHEN Y S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Adv Mater,2015,27:2049−2053. doi: 10.1002/adma.201405788 [5] QUAN B, SHI W H, ONG S J H, LU X C, WANG L Y P, JI G B, GUO Y F, ZHENG L R, XU Z C J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Adv Funct Mater,2019,28:1901236. [6] SINGH S K, AKHTAR M J, KAR K K. Hierarchical carbon nanotube-coated carbon fiber: ultra-lightweight, thin, and highly efficient microwave absorber[J]. ACS Appl Mater Interfaces,2018,10:24816−24828. doi: 10.1021/acsami.8b06673 [7] XIANG J, LI J L, ZHANG X H, YE Q, XU J H, SHEN X Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. J Mater Chem A,2014,2:16905−16914. doi: 10.1039/C4TA03732D [8] CHE R C, PENG L M, DUAN X F, CHEN Q, LIANG X L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon Nanotubes[J]. Adv Mater,2004,16:401−405. doi: 10.1002/adma.200306460 [9] WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2:14940−14946. doi: 10.1039/C4TA02815E [10] LIU P B, HUANG Y, ZHANG X. Superparamagnetic Fe3O4 nanoparticles on graphene-golyaniline: synthesis characterization and their excellent electromagnetic absorption properties[J]. J Alloy Compd,2014,596:25−31. doi: 10.1016/j.jallcom.2014.01.188 [11] DU Y C, LIU W W, QING R, WANG Y, HAN X J, MA J. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J]. ACS Appl Mater Interfaces,2014,6:12997−13006. doi: 10.1021/am502910d [12] WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6:11009−11017. doi: 10.1021/nn304630h [13] WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115:14025−14030. doi: 10.1021/jp202078p [14] CHEN D Z, WANG G S, HE S, LIU J, GUO L, CAO M S. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A,2013,1:5996−6003. doi: 10.1039/c3ta10664k [15] LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microp Mesop Mater,2015,21:97−104. [16] 田玉明, 朱保顺, 力国民. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报,2019,47(3):365−369.TIAN Y M, ZHU B S, LI G M. Influence of coal gangue amount on properties of ceramic proppants[J]. J Chin Ceram Soc,2019,47(3):365−369. [17] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095. doi: 10.1103/PhysRevB.61.14095 [18] LI G M, WANG L C, LI W X, DING R M, XU Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent[J]. Phys Chem Chem Phys,2014,16:12385−12392. doi: 10.1039/C4CP00647J [19] LIU J, ZHANG H B, SUN R, LIU Y, LIU Z, ZHOU A, YU Z Z. Hydrophobic, Flexible, and Lightweight MXene Foams for high-performance electromagnetic-interference shielding[J]. Adv Mater,2017,170:2367−2373. [20] LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. The novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8:14283. [21] QIAO M T, LEI X F, MA Y, TIAN L D, HE X W, SU K H, ZHANG Q Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Res,2018,11:1500−1519. doi: 10.1007/s12274-017-1767-0 [22] LIU Y, LI Y, JIANG K, TONG G, LV T, WU W. Controllable synthesis ofelliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption[J]. J Mater Chem C,2016,4:7316−7323. doi: 10.1039/C6TC01737A [23] JIAN X, XIAO X Y, DENG L J, TIAN W, WANG X, MAHMOOD N, DOU S X. Heterostructured Nanorings of Fe-Fe3O4@C Hybrid with Enhanced Microwave Absorption Performance[J]. ACS Appl Mater Interfaces,2018,10:9369−9378. [24] LI Y X, LIU R G, PANG X Y, ZHAO X N. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption atgigahertz frequencies[J]. Carbon,2018,162:372−381. [25] XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980. doi: 10.1016/j.cej.2019.122980 [26] GANGOPADHYAY S, HADJIPANAYIS G C, DALE B, SORENSEN C M, KLABUNDE K J, PAPAEFTHYMIOU V, KOSTIKAS A. Magnetic-properties of ultrafine iron particles[J]. Phys Rev B,1992,45(17):9778−9787. doi: 10.1103/PhysRevB.45.9778 [27] AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J] J Appl Phys, 1991, 69(11): 7762–7764. [28] LIU Q H, CAO H, BI C Y, LIANG K P, YUAN K P, SHE W, YANG Y J, CHE R C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Adv Mater,2016,28:486−490. doi: 10.1002/adma.201503149 -