留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀在煤炭热利用过程中的热力学研究

王江 赵永椿 张军营

王江, 赵永椿, 张军营. 铀在煤炭热利用过程中的热力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021058
引用本文: 王江, 赵永椿, 张军营. 铀在煤炭热利用过程中的热力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021058
WANG Jiang, ZHAO Yong-chun, ZHANG Jun-ying. Thermodynamic study of uranium in the process of coal thermal utilization[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021058
Citation: WANG Jiang, ZHAO Yong-chun, ZHANG Jun-ying. Thermodynamic study of uranium in the process of coal thermal utilization[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021058

铀在煤炭热利用过程中的热力学研究

doi: 10.19906/j.cnki.JFCT.2021058
基金项目: 国家自然科学基金(42030807)和湖北省重点研发计划项目(2020BCA076)资助
详细信息
    作者简介:

    王江:1427616493@qq.com

    通讯作者:

    Tel: 13419608698,E-mail: yczhao@hust.edu.cn

Thermodynamic study of uranium in the process of coal thermal utilization

Funds: The project was supported by the National Natural Science Fundation of China (42030807) and the Key Research and Development Program of Hubei Province (2020BCA076)
  • 摘要: 铀元素是一种放射性核素,也是一种重要的战略资源。中国部分地区煤炭中U含量异常富集,在高温转化后煤中U大量富集于固体产物中,会产生放射性风险。为了控制煤中U的释放并对产物中U进行资源化利用,探究和掌握煤中铀在热利用过程中的迁移转化规律十分必要。本研究基于热力学平衡原理,计算分析了干河煤、小龙潭煤和胜利煤中铀在热解、气化、燃烧过程中的形态分布以及钙基添加剂对U迁移转化的影响,以期为后续的实验研究提供理论指导。结果表明,煤中铀在热解、气化、燃烧条件下的存在形态各异,UO3(g)是各工况下产生的唯一的气相产物,高温、低压、强氧化性环境都会使UO3(g)的生成量增大。将铀固定在铀酸钙中能明显降低铀的挥发,使用钙基添加剂后干河煤在燃烧过程中铀酸钙的生成量明显增加,其中,以CaO的作用效果最为显著。
  • 图  1  热解过程中铀的存在形态

    Figure  1  Equilibrium composition of uranium species during the pyrolysis process

    (a): GH; (b): XLT; (c): SL

    图  2  干河煤在CO2气化过程中各工况下的含铀化合物的含量

    Figure  2  Amount of equilibrium composition of uranium species of GH at different working conditions during the gasification process with CO2

    (a): UO2; (b): UO2.33(B); (c): UO2(U); (d): UO3(g)

    图  3  三种煤在H2O气化过程中各工况下UOS的含量

    Figure  3  Amount of UOS of the three kinds coals

    (a): GH; (b): XLT; (c): SL

    图  4  干河煤在不同过氧系数的空气中燃烧各形态铀的百分比

    Figure  4  Percentage of various forms of uranium of GH burned in air with different peroxide coefficients

    (a): α = 0.8; (b): α = 1.2; (c): α = 1.5

    图  5  小龙潭煤在不同过氧系数的空气中燃烧各形态铀的百分比

    Figure  5  Percentage of various forms of uranium of XLT burned in air with different peroxide coefficients

    (a): α = 0.8; (b): α = 1.2; (c): α = 1.5

    图  6  胜利煤在不同过氧系数的空气中燃烧各形态铀的百分比

    Figure  6  Percentage of various forms of uranium of GH burned in air with different peroxide coefficients

    (a): α = 0.8; (b): α = 1.2; (c): α = 1.5

    图  7  使用添加剂后干河煤在燃烧时的CaO·UO3含量

    Figure  7  CaO·UO3 content of GH in combustion after using additives

    表  1  煤样煤质分析(空气干燥基)

    Table  1  Proximate and ultimate analysis of feed coal (air dry)

    Sample
    Proximate w/%Ultimate analysis w/%U/(mg·kg−1)
    MAVFCCHONS
    XLT17.3210.2039.8032.6849.933.3316.921.141.129.69
    GH1.367.7243.0947.8342.832.0611.440.588.48179.00
    SL10.4641.9625.8721.2133.312.7810.360.590.541.72
    下载: 导出CSV

    表  2  各煤种815 ℃灰化学成分数据

    Table  2  Chemical composition of feed coal at 815 ℃

    SampleComposition w/%
    SiO2Al2O3CaOFe2O3K2OMgONa2OSO3TiO2P2O5
    XLT33.9710.8829.4811.670.432.800.089.720.700.27
    GH52.1325.413.895.492.551.531.556.210.540.70
    SL61.0722.055.882.051.102.672.331.511.160.18
    下载: 导出CSV

    表  3  计算所考虑的含铀化合物

    Table  3  List of species containing uranium considered in this work

    PhaseUranium compounds
    GasU,UOx,UClx,UFx,UOFx,UAl2Cl10,UO2Cl2,UO2F,UO2F2,US,US2,(US)2
    LiquidUO2SO4,UO2SO3,UO2(NO3)2,UO2CO3,UO2(CH3COO)2,U,UOx,UClx,UFx,UOFx,USx,UNx,UPx,UCx,UOClx,UO2Clx,U2O2Cl5,(UO2)2Cl3,U2O5Cl5,U5O12Cl,UAlx,UFe2,UH3,USix,UPx,(NH4)3UO2F5,NH4(UO2)2F5*nH2O,NaUF6,UClxF4−x,U2O3F6,U3O5F8,BaO*UO2
    SolidBaO*nUO3,Ba(UO2)2(PO4)2,CaO·UO3,Ca(UO2)2(PO4)2,Fe(UO2)2(PO4)2,H2(UO2)2(PO4)2,K2UO4,K2(UO2)2(PO4)2,MgUO4,Mg(UO2)2(PO4)2,Na2O*nUO3,NaUO3,NaUO2(CH3COO)3,Na2(UO2)2(PO4)2,SrUO4,Sr(UO2)2(PO4)2,UO2CO3,UO2SO3,UOS,UPO5,UP2O7,U(SO3)2,USiO4
    note:UOx, UClx and UFx represent compounds corresponding to different values of x,e.g.:UOx—UO,UO2,UO3,U2O2,U2O3,U2O4
    下载: 导出CSV

    表  4  1000 kg煤在不同系数下燃烧所需空气量

    Table  4  Amount of air required for 1000 kg coal to burn at different peroxide coefficients

    SampleGasAmount of air reguired/kmol
    α=0.8α=1.2α=1.5
    GHO231.9447.9159.89
    N2127.55191.43239.34
    XLTO236.6554.9768.72
    N2136.12204.18255.23
    SLO225.3237.8747.34
    N294.98142.46178.08
    下载: 导出CSV
  • [1] 杨聪, 童蕾, 李义连, 宁宇. 含铀煤燃烧底灰中铀的形态分布及其影响因素研究[J]. 安全与环境工程,2019,26(4):91−98.

    YANG Cong, TONG Lei, LI Yi-lian, NING Yu. Uranium speciation distribution and its influencing factors in the bottom ash of uranium-bearing coal combustion[J]. Saf Environ Eng,2019,26(4):91−98.
    [2] YANG J. Concentration and distribution of uranium in Chinese coals[J]. Energy, 2007, 32(3): 203-212.
    [3] 黄文辉, 唐修义. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质, 2002, (S1): 56-64.

    HUANG Wen-hui, TANG Xiu-yi. Uranium, thorium and radionuclides in Chinese coal[J]. Coal Geol China, 2002, (S1): 56-64.
    [4] ZHANG Y, SHI M, WANG J, YAO J, CAO Y, CARLOS E. ROMERO, PAN W. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants[J]. Fuel, 2016, 166: 404–409.
    [5] YANG Z, LI Y, LOU Q, LIU D, NING Y, YANG S, TANG Y, ZHANG Y, TANG Z, WANG X. Release of uranium and other trace elements from coal ash by (NH4)2SO4 activation of amorphous phase[J]. Fuel,2019,239:774−785. doi: 10.1016/j.fuel.2018.11.032
    [6] 文湘闽, 李建成. 煤灰渣利用中对人群所产生辐射影响的评价[J]. 四川环境,1994,(4):32−35.

    WEN Xiang-min, LI Jian-cheng. Evaluation of radiation influence in the utilization of coal ash and cinder[J]. Sichuan Environ,1994,(4):32−35.
    [7] 姜子英, 张燕齐, 陈晓秋, 廖海涛, 潘自强. 中国燃煤发电排放的放射性环境影响评价研究[J]. 辐射防护,2018,38(3):177−185.

    JIANG Zi-ying, ZHANG Yan-qi, CHEN Xiao-qiu, LIAO Hai-tao, PAN Zi-qiang. Study on radioactive environmental impact assessment of uranium, thorium and radionuclides from coal in China for coal-fired power generation[J]. Radiat Prot,2018,38(3):177−185.
    [8] 蔡晋强. 湖南省煤及石煤的放射性水平调查研究[J]. 煤矿环境保护,1996,(4):37−41.

    CAI Jin-qiang. Investigation on the radioactivity level of coal and stone coal in Hunan province[J]. Energy Environ Prot,1996,(4):37−41.
    [9] SWAINE D. J. Trace Elements in Coal[M]. London: Butterworths, 1990: 278.
    [10] DAVID G C, RICHARD C R, JOHN M O. Behavior of natural radionuclides in western coal-fired power plants[J]. Environ Sci Technol,1978,12:442−446.
    [11] QUISPE D, LÓPEZ R P, SILVA L F O, NIETO J M. Changes in mobility of hazardous elements during coal combustion in sanata catarina power plant (brazil)[J]. Fuel,2002,94:495−503.
    [12] 刘东原, 赵永椿, 张军营, 郑楚光. 煤燃烧和CO2气化过程中铀的释放规律[J]. 燃烧科学与技术,2016,22(6):506−512.

    LIU Dong-yuan, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Release characteristics of uranium during coal combustion and CO2 gasification[J]. J Combust Sci Technol,2016,22(6):506−512.
    [13] YANG J, LIU D, WANG Y, ZHAO Y, ZHANG Y, ZHANG J, ZHENG C. Release and the interaction mechanism of uranium and alkaline/alkaline-earth metals during coal combustion[J]. Fuel,2016,186:405−413. doi: 10.1016/j.fuel.2016.08.053
    [14] 王泉海, 邱建荣, 李凡, 刘迎晖, 郑楚光. 煤燃烧过程中矿物质形态分布特性[J]. 煤炭转化,2002,25(1):33−37. doi: 10.3969/j.issn.1004-4248.2002.01.007

    WANG Quan-hai, QIU Jian-rong, LI Fan, LIU Ying-hui, ZHENG Chu-guang. Characteristics of mineral morphology distribution during coal combustion[J]. Coal Convers,2002,25(1):33−37. doi: 10.3969/j.issn.1004-4248.2002.01.007
    [15] 刘东原. 煤燃烧过程中铀的迁移转化规律实验研究[D]. 武汉: 华中科技大学, 2016.

    LIU Dong-yuan. The study on migration and transformation of uranium during coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [16] TANG Y, YANG Z, LI Y, LIU D, NING Y, ZHANG Y, YANG S, TANG Z. Influences of additives on the fate of uranium during coal co-combustion process: The significant activation by CaCO3[J]. Fuel,2020,287:119421.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-03
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回