留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型海鲜废弃物热解特性及动力学研究

廖纯 谭传明 吴简 张晓东

廖纯, 谭传明, 吴简, 张晓东. 典型海鲜废弃物热解特性及动力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022059
引用本文: 廖纯, 谭传明, 吴简, 张晓东. 典型海鲜废弃物热解特性及动力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022059
LIAO Chun, TAN Chuan-ming, WU Jian, ZHANG Xiao-dong. Pyrolysis characteristics and kinetics of typical seafood wastes[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022059
Citation: LIAO Chun, TAN Chuan-ming, WU Jian, ZHANG Xiao-dong. Pyrolysis characteristics and kinetics of typical seafood wastes[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022059

典型海鲜废弃物热解特性及动力学研究

doi: 10.19906/j.cnki.JFCT.2022059
基金项目: 国家自然科学基金(51876108)
详细信息
    通讯作者:

    E-mail: Xd_zhang77@aliyun.com

  • 中图分类号: X705

Pyrolysis characteristics and kinetics of typical seafood wastes

Funds: The project was supported by the National Natural Science Foundation of China (51876108)
  • 摘要: 热解炭化是餐厨垃圾处理和资源化的有效手段。本文采用热重分析手段,对鱼骨、蟹壳、虾壳三种典型海鲜废弃物的热解特性进行分析,研究不同升温速率(20、40、60 ℃/min)条件下热解过程的特征参数,分析原料成分组成对于海鲜废弃物热解特性的影响。基于热解特性参数对热解过程进行动力学分析,结合表观动力学参数并在对比多种机理模型的拟合效果基础上,确定了较为适宜的海鲜废弃物热解过程机理模型。结果表明,海鲜废弃物热解过程与其成分组成具有密切关联,TG-DTG曲线对比分析发现有机质和无机盐含量是影响热解过程的重要因素。随着升温速率的提高, 三种海鲜废弃物的热解特性参数具有一致的增长趋势。动力学研究发现鱼骨主要热解过程符合一级化学反应机理,而蟹壳和虾壳在有机物分解阶段可由一段1.5级化学反应过程描述,分析认为反应级数的差别与与海鲜废弃物中几丁质含量有关。表观活化能$ {E}_{\alpha } $随着升温速率的提高而增大,而活化能增量$ \Delta {E}_{\alpha } $逐渐变小,可以推测采用不低于40 ℃/min的升温速率不会导致三种海鲜废弃物热解过程难度的增大并可能更具经济性。研究结果为海鲜废弃物热解处理技术的开发提供了基础过程特性数据。
  • 图  1  典型的海鲜废弃物热失重过程曲线

    Figure  1  Typical TG and DTG process curves of seafood waste

    图  2  不同升温速率下海鲜废弃物的热失重曲线对比

    Figure  2  Comparison of TG and DTG curves of seafood wastes under varied heating rates

    图  3  20 ℃/min 升温速率下热解动力学拟合曲线。(a)鱼骨;(b)蟹壳;(c)虾壳

    Figure  3  Pyrolysis kinetics fit curves under 20 ℃/min heating rate condition. (a)fish bone,(b)shrimp shell, (c)crab shell.

    图  4  海鲜废弃物热解特性曲线。(a)鱼骨;(b)蟹壳;(c)虾壳

    Figure  4  Pyrolysis characteristic curve of seafood wastes under varied heating rates. (a)fish bone, (b) crab shell, (c) shrimp shell

    图  5  等转化率Friedman方法获得数据拟合曲线。(a)鱼骨;(b) 蟹壳; (c)虾壳

    Figure  5  Data fitting curve with Friedman method under iso-conversion. (a)fish bone, (b)crab shell, (c)shrimp shell

    表  1  海鲜废弃物原料工业分析及元素分析

    Table  1  Proximate and ultimate analysis of samples

    SampleProximate analysis(wt.%,dry base) Elemental analysis w/%(dry base)QHHV(MJ/kg)
    MAVFCCHNSO*
    Fish bone1.8854.5441.701.88 23.943.7427.230.3444.758.63
    Crab shell1.7330.9664.502.8125.804.0431.430.2738.4612.46
    Shrimp shell2.5220.5470.955.9937.744.8743.050.3214.0215.70
    M: moisture;A: ash;V: volatile; FC: fixed carbon; O*: by difference
    下载: 导出CSV

    表  2  海鲜废弃物原料化学组成分析

    Table  2  Chemical composition of samples

    Project/%Fish boneCrab shellShrimp shell
    Crude protein28.1719.2840.29
    Crude fat13.263.678.12
    Chitin2.1426.5924.20
    Calcium carbonate-49.6626.41
    Else56.430.800.98
    Else*: by difference
    下载: 导出CSV

    表  3  不同反应机理、模型及f(α)和g(α)

    Table  3  Different reaction mechanisms、models、f(α) and g(α)

    Reaction MechanismModel name$ \mathrm{f}\left(\mathrm{\alpha }\right) $$ \mathrm{g}\left(\mathrm{\alpha }\right) $
    Chemical Reaction orderChemical Reaction Order 1(F1)$ 1-\mathrm{\alpha } $$ -\mathrm{l}\mathrm{n}\left(1-\mathrm{\alpha }\right) $
    Chemical Reaction Order 1.5(F1.5)$ {\left(1-\mathrm{\alpha }\right)}^{1.5} $$ 2\left[\mathrm{l}\mathrm{n}{\left(1-\mathrm{\alpha }\right)}^{-1.5}-1\right] $
    DiffusionParabolic law (D1)$\dfrac{1}{2}\mathrm{\alpha }$$ {\alpha }^{2} $
    Valensi equation(D2)$ {-\left[ln\left(1-\alpha \right)\right]}^{-1} $$ \mathrm{\alpha } + \left(1-\mathrm{\alpha }\right)\mathrm{l}\mathrm{n}\left(1-\mathrm{\alpha }\right) $
    Ginstling-Broushtein equation(D3)$\dfrac{3}{2}{\left[{\left(1-\mathrm{\alpha }\right)}^{\frac{1}{3} }-1\right]}^{-1}$$\left(1-\dfrac{2}{3}\alpha \right)-{\left(1-\alpha \right)}^{\frac{2}{3} }$
    Nucleation and growthAvrami-Erofeev equation Nucleation and growth(N1.5)$ 3{\left(1-\mathrm{\alpha }\right)\left[-\mathrm{l}\mathrm{n}\left(1-\mathrm{\alpha }\right)\right]}^{\frac{2}{3}} $$ {\left[-ln\left(1-\alpha \right)\right]}^{\frac{2}{3}} $
    Avrami-Erofeev equation Nucleation and growth(N2)$ 2{\left(1-\mathrm{\alpha }\right)\left[-\mathrm{l}\mathrm{n}\left(1-\mathrm{\alpha }\right)\right]}^{\frac{1}{2}} $$ {\left[-ln\left(1-\alpha \right)\right]}^{\frac{1}{2}} $
    Phase interfacial reactionShrinkage geometrical column(S1)$ 2{\left(1-\mathrm{\alpha }\right)}^{\frac{1}{2}} $$ {1-\left(1-\alpha \right)}^{\frac{1}{2}} $
    Shrinkage geometrical Spherical(S2)$ 3{\left(1-\mathrm{\alpha }\right)}^{\frac{2}{3}} $$ {1-\left(1-\alpha \right)}^{\frac{1}{3}} $
    Power lawPower law(P)$ 1 $$ \mathrm{\alpha } $
    下载: 导出CSV

    表  4  热解特性参数

    Table  4  Pyrolysis characteristic parameters

    Sample$ \mathrm{\beta } $(℃/min)$ {\mathrm{T}}_{\mathrm{i}}/{\text{℃}} $$ {\mathrm{T}}_{\mathrm{e}}/{\text{℃}} $$ {\mathrm{T}}_{\mathrm{m}\mathrm{a}\mathrm{x}}/{\text{℃}} $$\Delta {T}_{\frac{1}{2} }/{\text{℃} }$$ {\left(\dfrac{{d}_{w}}{{d}_{t}}\right)}_{max}/\left(\%{min}^{-1}\right) $$ {\left(\dfrac{{d}_{w}}{{d}_{t}}\right)}_{max}/\left(\%{min}^{-1}\right) $$ \mathrm{\phi } $/%$ D\left({10}^{-5}\right) $
    Fish bone20289.1462.2353.41324.080.8662.210.97
    40290.8465.1354.91548.251.7462.393.42
    60295.2475.9370.117012.402.2762.025.76
    Crab shell20290.1422.3355.61656.221.4237.693.23
    40291.5424.8361.516710.172.6143.108.58
    60293.9428.6363.917820.253.5836.6624.12
    Shrimp shell20281.3440.4350.31607.131.5333.334.61
    40288.6444.5359.116415.212.9036.6716.43
    60297.4446.7370.217224.224.1134.1734.60
    下载: 导出CSV

    表  5  20 ℃/ min 升温速率条件下各种机理模型拟合情况及动力学参数

    Table  5  fitting precision and pyrolysis kinetic parameters with various mechanistic model under 20 ℃/min heating rate

    SampleModel$ {E}_{\alpha } $
    (kJ/mol)
    $ A $
    (min−1)
    $ {R}^{2} $
    Fish boneF124.5515.180.99373
    F1.564.12580897.020.97987
    D127.9712.060.94494
    D236.0748.420.97086
    D339.7426.650.97909
    N1.512.800.850.98876
    N26.920.150.97631
    S115.550.670.96583
    S218.300.980.98019
    P8.630.160.85496
    Crab shellF141.80258.200.94215
    F1.551.718377.520.99889
    D178.14117446.920.93472
    D283.08181575.480.94190
    D384.8860732.260.94437
    N1.524.407.710.92395
    N215.691.120.89692
    S137.7048.080.92887
    S239.0344.280.93359
    P33.8737.760.91278
    Shrimp shellF143.75565.680.97009
    F1.568.08470422.780.99625
    D173.1571963.720.94220
    D280.45191870.250.95528
    D383.2981155.450.95985
    N1.525.6813.240.96013
    N216.651.710.94519
    S137.1758.530.94942
    S239.3064.900.95718
    P31.3528.160.92024
    下载: 导出CSV

    表  6  不同升温速率条件下海鲜废弃物的热解动力学参数

    Table  6  Pyrolysis kinetic parameters of seafood wastes under varied heating rates condition

    Sampleβ(℃/min)T(℃)Eα(kJ/mol)A(min−1)R2Model
    Fish bone20289.1−462.224.5515.180.99373F1
    40290.8−465.141.30502.370.99284F1
    60295.2−475.945.011370.200.99737F1
    Crab shell20290.1−422.351.718377.520.99798F1.5
    40291.5−424.856.2942154.830.99622F1.5
    60293.9−428.657.97126006.410.99617F1.5
    Shrimp shell20281.3−440.468.08470422.780.99625F1.5
    40288.6−444.578.067323013.540.99780F1.5
    60297.4−446.780.4313216157.660.99755F1.5
    下载: 导出CSV
  • [1] ISLAM Md. S, KHAN S, TANAKA M. Waste loading in shrimp and fish processing effluents: Potential source of hazards to the coastal and nearshore environments[J]. Mar Pollut Bull,2004,49:103−110. doi: 10.1016/j.marpolbul.2004.01.018
    [2] GHALY AE, RAMAKRISHNAN VV, BROOKS MS, BUDGE SM, DAVE D. Fish Processing Wastes as a Potential Source of Proteins, Amino Acidsand Oils: A Critical Review[J]. J Microbial & Biochem Technol, 2013, 2(4).
    [3] YAN N, CHEN X, 2015. Sustainability: Don’t waste seafood waste. Nat News, 524(7564), 155–157.
    [4] NDINELAGO EV, TIMOTEUS K, NAFTAL GN, LEE TK, SEM I, TIAGO M. Assessment and quantification of Namibian seafood waste production[J]. Ocean Coast Manage,2021,199.
    [5] ELKHALIFA S, AL-ANSARI T, MACKEY HR, MCKAY G. Food waste to biochars through pyrolysis: A review[J]. Resour Conserv Recy,2019,144.
    [6] JOGEIR T, SISSEL A, BRITT H, ANDERS A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. [J]. Comp Biochem Physiol B Biochem Mol Biol, 2007, 146(3).
    [7] REN X-Y, WANG J-J, YU J-F, SONG B, FENG H-P, SHEN M-C, ZHANG H, ZOU J-J, ZENG G-M, TANG L, WANG J-J. Waste valorization: Transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant[J]. J Clean Prod, 2020.
    [8] SHI G-B, HE S, CHEN G-Y, et al. Crayfish shell-based micro-mesoporous activated carbon: Insight into preparation and gaseous benzene adsorption mechanism[J]. Chem Eng J,2022,428.
    [9] XUE X-X, WENG Y-J, JIANG Z-D, YANG S-C, WU Y-K, MENG S-H, ZHANG C-X, SUN Q, ZHANG Y-L. Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery[J]. J Anal Appl Pyrol, 2021.
    [10] NORISHAM S F, MUNAHAT N F. Torrefaction of fish waste (Sardinella fimbriata) in a fixed bed reactor: Yields and biochar characterization[J]. EESCS, 2021, 765(1).
    [11] DOU S, KE X-X, SHAO Z-D, ZHONG L-B, ZHAO Q-B, ZHENG Y-M. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin. [J]. Chemosphere, 2021, 287(Pt 1).
    [12] LICHUN D, FURONG T, HONG L, et al. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal[J]. J Environ Manage,2017,198:70−74.
    [13] 代敏怡, 郭占斌, 赵立欣, 孟海波, 姚宗路, 盛晨绪, 李丽洁, 吴雨浓, 张迎, 丛宏斌. 玉米秸秆与市政污泥混合热解特性及动力学分析[J]. 农业工程学报,2021,37(2):242−250. doi: 10.11975/j.issn.1002-6819.2021.2.028

    DAI Min-yi, GUO Zhan-bin, ZHAO Li-xin, MENG Hai-bo, YAO Zong-lu, SHENG Chen-xu, LI Li-jie, WU Yu-nong, ZHANG Ying, CONG Hong-bin. Pyrolysis characteristics and kinetic analysis of mixed pyrolysis of corn stover and municipal sludge[J]. Trans, CSAE,2021,37(2):242−250. doi: 10.11975/j.issn.1002-6819.2021.2.028
    [14] VYAZOVKIN S, BURNHAM AK, FAVERGEON L, KOGA N, MOUKHINA E, PéREZ-MAQUEDA L A, SBIRRAZZUOLI N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochim Acta,2020,689.
    [15] NAQVI S R, TARIQ R, HAMEED Z, ALI I, NAQVI M, CHEN W H, CEYLAN S, RASHID H, AHMAD J, TAQVI S A, SHAHBAZ M. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method[J]. Renew Energ,2019,131.
    [16] WEI W, YANYAN L, SHAOXIAN S, WEIQUAN C. Facile pyrolysis of fishbone charcoal with remarkable adsorption performance towards aqueous Pb (II)[J]. J Environ Chem Eng, 2017, 5(5).
    [17] NORISHAM S F, MUNAHAT N F. Torrefaction of fish waste (Sardinella fimbriata) in a fixed bed reactor: Yields and biochar characterization[J]. EESCS, 2021, 765(1).
    [18] MUHAMAD N, TRIANNISA R, FITRI D. Synthesis and Characterization of Biochar from Crab Shell by Pyrolysis[J]. MSECS,2019,553.
    [19] SUWANNASINGHA N, KANTAWONG A, TUNKIJJANUKIJ S, AENGLONG C, LIU H-B, KLAYPRADIT W. Effect of calcination temperature on structure and characteristics of calcium oxide powder derived from marine shell waste[J]. J Saudi Chem Soc, 2022(prepublish).
    [20] ENDANG H, KHAERIAH D, OCTOLIA T, KIAGUS D. The Influence of Calcination Temperature to Calcium Content in the Mangrove Crab Shells (Scylla serrata) from Merauke[J]. JPCS, 2021, 1940(1).
    [21] O. P. GBENEBOR, S. O. ADEOSUN, G. I. LAWAL, S. JUN. Role of CaCO3 in the physicochemical properties of crustacean-sourced structural polysaccharides[J]. Mater Chem Phys,2016,184.
    [22] XIANGGUO L, YANG L, BAOGUO M, WEIQIANG W, SHOUWEI J. Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA[J]. Arab J Chem, 2017, 10(S2).
    [23] GLASNER N, HANSEN H C B, YONGFENG H, BEKIARIS G, BRUUN S. Low crystalline apatite in bone char produced at low temperature ameliorates phosphorus-deficient soils[J]. Chemosphere,2019,223.
    [24] BOUTINGUIZA M, POU J, COMESAñA R, LUSQUIñOS F, DE CARLOS A, LEON B. Biological hydroxyapatite obtained from fish bones[J]. Mat Sci Eng C, 2012, 32(3).
    [25] WANG G-Y, DAI G-X, DING S-Q, WU J-F, WANG S-R. A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process[J]. J Analyt Appl Pyrol,2021,156.
    [26] 杜瑞岭, 吴铿, 刘起航, 员晓, 张黎. 分段法研究兴隆庄煤热解反应过程动力学[J]. 哈尔滨工业大学学报,2016,48(4):172−176. doi: 10.11918/j.issn.0367-6234.2016.04.029

    DU Rui-ling, WU Keng, LIU Qi-hang, YUAN Xiao, ZHANG Li. Study on Kinetics of Xinglongzhuang Coal Pyrolysis Process by Segmentation Method[J]. J Harbin Inst Technol,2016,48(4):172−176. doi: 10.11918/j.issn.0367-6234.2016.04.029
    [27] MOHSIN R, BASIM AJ, AL-MARZUOQI A H, ABRAR I. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method[J]. Renew Energ,2022,183.
    [28] 陈志文. 基于热质传递过程的桉木屑热解模型研究[D]. 华南农业大学, 2018.

    CHEN Zhi-wen. Study on the pyrolysis model of eucalyptus wood chips based on heat and mass transfer process[D]. South China Agriculrual University, 2018
    [29] LINTAO Z, XICHAO H, NINGNING G, BOQIAO F, CAIQIN Q. Investigation of volatile chemicals and their distributions from pyrolysis of chitin by FT-IR and GC–MS[J]. J Analyt Appl Pyrol,2015,112.
    [30] STOLAREK P, LEDAKOWICZ S. Pyrolysis kinetics of chitin by non-isothermal thermogravimetry[J]. Thermochim Acta. 433 (2005) 200–208.
    [31] 张晓东, 许敏, 孙荣峰, 孙立. 玉米秸热解动力学研究[J]. 燃料化学学报,2006,(1):123−125.

    ZHANG Xiao-dong, XU Min, SUN Rong-feng, SUN Li. Study on the kinetics of pyrolysis of corn stover[J]. J Fuel Chem Technol,2006,(1):123−125.
    [32] QUNPENG C, MENG J, ZHIHUA C, XUN W, BO X. Pyrolysis and kinetic behavior of banana stem using thermogravimetric analysis[J]. Energ Source Part A, 2016, 38(22).
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 录用日期:  2022-06-22
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回