留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究

王月伦 安会会 张雪纯 马云欣 詹贵贵 刘豪杰 曹景沛

王月伦, 安会会, 张雪纯, 马云欣, 詹贵贵, 刘豪杰, 曹景沛. 甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022065
引用本文: 王月伦, 安会会, 张雪纯, 马云欣, 詹贵贵, 刘豪杰, 曹景沛. 甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022065
WANG Yue-lun, AN Hui-hui, MA Yun-xin, ZHAN Gui-gui, ZHANG Xue-chun, LIU Hao-jie, CAO Jing-pei. Mechanism of Hydrogenation of CO to Aromatics from Coal Pyrolysis Gas of Low Rank under Methanol Atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022065
Citation: WANG Yue-lun, AN Hui-hui, MA Yun-xin, ZHAN Gui-gui, ZHANG Xue-chun, LIU Hao-jie, CAO Jing-pei. Mechanism of Hydrogenation of CO to Aromatics from Coal Pyrolysis Gas of Low Rank under Methanol Atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022065

甲醇气氛下低阶煤热解气中CO加氢制芳烃机理研究

doi: 10.19906/j.cnki.JFCT.2022065
基金项目: 国家自然科学基金资助(21975282)
详细信息
    通讯作者:

    Vice Prof. Yuelun Wang, E-mail: wangyuelun@126.com

    Prof. Jingpei Cao, E-mail: caojingpei@cumt.edu.cn

  • 中图分类号: TQ530.2

Mechanism of Hydrogenation of CO to Aromatics from Coal Pyrolysis Gas of Low Rank under Methanol Atmosphere

Funds: The work was supported by National Natural Science Foundation of China (grant no. 21975282)
  • 摘要: 由于低阶煤含氧官能团较多,热解过程产生大量CO和CO2,甲醇气氛提供的活性氢可实现CO或CO2催化加氢生成轻质芳烃。本文采用密度泛函理论探讨了甲醇气氛下低阶煤热解气之一CO于Fe/HZSM-5催化剂上经烯烃中间体制芳烃的机理,结果表明CO于Fe5C2(510)表面加氢生成低碳烯烃,进而通过多次甲基化和去质子化实现C-C键偶联及链增长,其中甲基化需活化能较高。${\rm{C}}^+_6 $芳构化过程通过氢转移、去质子化及环化生成苯,其氢转移最难。整个CO加氢制芳烃过程以甲基化所需能垒最高,成为该反应的决速步。
  • 图  1  46T团簇模型示意图(A:主视图,B:后视图)

    Figure  1  Schematic diagram of 46T cluster model(A: Main view,B: Back view)

    图  2  Fe5C2 (510)模型示意图

    Figure  2  Schematic diagram of Fe5C2 (510) model

    图  3  CO和H吸附构型图

    Figure  3  CO and H adsorption configuration diagram

    图  4  生成中间体C2H4过程中的过渡态

    紫色:Fe,红色:O,白色:H,绿色:表面物种的C,灰色:Fe5C2(510)表面C

    Figure  4  Transition states in the formation of C2H4

    Purple: Fe, red: O, white: H, green: C of surface species, gray: surface C of Fe5C2(510)

    图  5  生成C2H4势能图

    Figure  5  Potential energies of the formation of C2H4

    图  6  生成${\rm{C}}^+_6 $路径图

    Figure  6  Path of the formation of ${\rm{C}}^+_6 $

    图  7  生成${\rm{C}}^+_6 $路径势能图

    Figure  7  Potential energies of the formation of ${\rm{C}}^+_6 $

    图  8  ${\rm{C}}^+_6 $芳构化路径图

    Figure  8  The process of aromatization for ${\rm{C}}^+_6 $

    图  9  ${\rm{C}}^+_6 $芳构化势能图

    Figure  9  The potential energies of ${\rm{C}}^+_6 $ aromatization

    图  10  甲醇脱水过程过渡态

    Figure  10  The transition state of methanol dehydration process

    图  11  C6 + 芳构化氢转移过渡态

    Figure  11  The transition states of hydrogen transfer for C6 + aromatization

    表  1  生成C2H4计算结果(823 K,101 KPa)

    Table  1  The calculation results of forming C2H4 (823 K,101 KPa)

    Reaction∆H(kJ/mol)∆G(kJ/mol)k (s−1)
    H + CO→H + C + O761242.31 × 105
    H + C + O→CH + O−50122.81 × 1012
    CH + O + H→CH2 + O75821.03 × 108
    CH2 + CH2→CH2CH2101121.38 × 106
    下载: 导出CSV

    表  2  生成${\rm{C}}^+_6 $计算结果(823 K,101 Kpa)

    Table  2  The calculation results of forming ${\rm{C}}^+_6 $ (823 K,101 Kpa)

    Reaction∆H(kJ/mol)∆G(kJ/mol)k (s−1)
    M1301354.37 × 104
    D1−42537.25 × 109
    M2341581.50 × 103
    D2−41791.64 × 108
    M351961.35 × 107
    D3−22612.31 × 109
    M4391656.16 × 102
    下载: 导出CSV

    表  3  ${\rm{C}}^+_6 $芳构化计算结果(823 K,101 Kpa)

    Table  3  The calculation results of ${\rm{C}}^+_6 $ aromatization (823 K,101 Kpa)

    Reaction∆H(kJ/mol)∆G(kJ/mol)k (s−1)
    D1−18574.13 × 109
    H1601223.10 × 105
    C1−109781.92 × 108
    D2−55481.54 × 1010
    H2−291072.77 × 106
    D3−11311.85 × 1011
    H3−27941.85 × 107
    D4−81151.91 × 1012
    下载: 导出CSV
  • [1] 赵君强. 煤化工绿色发展研究[J]. 煤炭与化工,2020,43(7):126−127. doi: 10.19286/j.cnki.cci.2020.07.036

    ZHAO Jun-qiang. Research on green development of coal chemical industry[J]. Coal and Chemical Industry,2020,43(7):126−127. doi: 10.19286/j.cnki.cci.2020.07.036
    [2] 林涛海. 中国煤化工工业发展现况及发展趋向[J]. 化工管理,2021,(19):63−64. doi: 10.19900/j.cnki.ISSN1008-4800.2021.19.028

    LIN Tao-hai. The Present Situation and Future Development Trend of Coal Chemical Industry in China[J]. Chemical Enterprise Management,2021,(19):63−64. doi: 10.19900/j.cnki.ISSN1008-4800.2021.19.028
    [3] YAN L J, LIU Y J, LV P, WANG M J, LI F, BAO W R. Effect of Brønsted acid of Y zeolite on light arene formation during catalytic upgrading of coal pyrolysis gaseous tar[J]. J. Energy Inst,2020,93(6):2247−2254. doi: 10.1016/j.joei.2020.06.007
    [4] REN X Y, FENG X B, CAO J P, TANG W, WANG Z H, YANG Z, ZHAO J P, ZHANG L Y, WANG Y J, ZHAO X Y. Catalytic Conversion of Coal and Biomass Volatiles: A Review[J]. Energy Fuels,2020,34(9):10307−10363. doi: 10.1021/acs.energyfuels.0c01432
    [5] HE L, HUI H L, LI S G, LIN W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel,2018,216:227−232.
    [6] LIU Y J, YAN L J, BAI Y H, LI F. Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites[J]. J Anal Appl Pyrolysis,2018,132:184−189. doi: 10.1016/j.jaap.2018.03.001
    [7] LI Y, AMIN M N, LU X M, LI C S, REN F Q, ZHANG S J. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst[J]. Chem Eng Sci,2016,155:194−200. doi: 10.1016/j.ces.2016.08.003
    [8] KONG X J, Bai Y H, YAN L J, LI F. Catalytic upgrading of coal gaseous tar over Y-type zeolites[J]. Fuel,2016,180:205−210.
    [9] HE L, LI S G, Lin W G. Catalytic cracking of pyrolytic vapors of low-rank coal over limonite ore[J]. Energy Fuels,2016,30:6984−6990.
    [10] JIN L J, BAI X Y, LI Y, DONG C , HU H Q, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46.
    [11] XU Y, YUAN X, CHEN M, et al. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient non-oxidative methane dehydroaromatization[J]. J Catal,2021,396:224−241. doi: 10.1016/j.jcat.2021.02.028
    [12] CHAREONPANICH M. , BOONFUENG T., LIMTRAKUL J., Production of aromatic hydrocarbons from Mae-Moh lignite[J]. Fuel Process. Technol,2002,79(2):171−179. doi: 10.1016/S0378-3820(02)00111-X
    [13] ZHANG H Y, WANG Y G, ZHANG P Z, LIN X C, ZHU Y F. Preparation of NiW catalysts with alumina and zeolite Y for hydroprocessing of coal tar[J]. J Fuel Chem Technol,2013,41(9):1085−1091. doi: 10.1016/S1872-5813(13)60046-8
    [14] GU Z L, CHANG N, HOU X P, WANG J P, LIU Z K. Experimental study on the coal tar hydrocracking process in supercritical solvents[J]. Fuel,2012,91(1):33−39. doi: 10.1016/j.fuel.2011.07.032
    [15] 靳立军, 李扬, 胡浩权. 甲烷活化与煤热解耦合过程提高焦油产率研究进展[J]. 化工学报,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465

    JIN Li-jun, LI Yang, HU Hao-quan. Research progress of integrated methane activation with coal pyrolysis for improving coal tar yield[J]. CIESC Journal,2017,68(10):3669−3677. doi: 10.11949/j.issn.0438-1157.20170465
    [16] WANG Y L, YU J P, AN H H, JIN W J, QIAO J Q, SUN Y, CAO J P. Catalytic upgrading of coal tar coupling with methanol using model compound over hierarchal ZSM-5 for increasing light aromatic production under atmosphere pressure[J]. Fuel Process Technol,2021,211:106600. doi: 10.1016/j.fuproc.2020.106600
    [17] ZHANG M, MOUTSOGLOU A. Catalytic fast pyrolysis of prairie cordgrass lignin and quantification of products by pyrolysis-gas chromatography-mass spectrometry[J]. Energy Fuels,2014,28(2):1066−1073. doi: 10.1021/ef401795z
    [18] LI L, FAN H J, HU H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel,2015,153:70−77. doi: 10.1016/j.fuel.2015.02.088
    [19] FU Y, NI Y M, CHEN Z Y, ZHU W L, LIU Z M. Achieving high conversion of syngas to aromatics[J]. J Eng Chem,2022,66:597−602.
    [20] XU Y F, WANG J, MA G Y, BAI J Y, DU Y X, DING M Y. Direct synthesis of aromatics from syngas over Mo-modified Fe/HZSM-5 bifunctional catalyst[J]. Appl Catal A: Gen,2020,598.
    [21] FUJIMOTO K, KUDO Y, TOMINAGA H O, Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:II. Direct synthesis of aromatic hydrocarbons from synthesis gas[J]. J Catal,1984,87(1):136−143. doi: 10.1016/0021-9517(84)90176-3
    [22] XU Y, LIU D, LIU X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [23] CHENG K. , ZHOU W., KANG J. C., HE S., SHI S. l., ZHANG Q. H., PAN Y., WEN W., WANG Y., Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347. doi: 10.1016/j.chempr.2017.05.007
    [24] ZHANG M H, REN J, YU Y Z. Insights into the Hydrogen Coverage Effect and the Mechanism of Fischer-Tropsch to Olefins Process on Fe5C2(510)[J]. ACS Catal,2020,10:689−701. doi: 10.1021/acscatal.9b03639
    [25] ZHAO H B, JIANG H, CHENG M, LIN Q, LV Y J, XU Y, XIE J Z, LIU J X, MEN Z W, MA D. Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study[J]. Appl Catal A: Gen,2021,627:118382. doi: 10.1016/j.apcata.2021.118382
    [26] WANG S, CHEN Y Y, WEI Z H, QIN Z F, MA H, DONG M, LI J F, FAN W B, WANG J G. Polymethylbenzene or alkene cycle? theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite[J]. J Phys Chem C,2015,119(51):28482−28498. doi: 10.1021/acs.jpcc.5b10299
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 录用日期:  2022-07-11
  • 修回日期:  2022-06-02
  • 网络出版日期:  2022-08-03

目录

    /

    返回文章
    返回