留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt-CeO2/ZSM-22催化正庚烷异构化反应性能研究

李子信 郗宏娟 陈晓燕 马中义 贾丽涛 李德宝 侯博

李子信, 郗宏娟, 陈晓燕, 马中义, 贾丽涛, 李德宝, 侯博. Pt-CeO2/ZSM-22催化正庚烷异构化反应性能研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1805-1813. doi: 10.19906/j.cnki.JFCT.2023031
引用本文: 李子信, 郗宏娟, 陈晓燕, 马中义, 贾丽涛, 李德宝, 侯博. Pt-CeO2/ZSM-22催化正庚烷异构化反应性能研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1805-1813. doi: 10.19906/j.cnki.JFCT.2023031
LI Zi-xin, XI Hong-juan, CHEN Xiao-yan, MA Zhong-yi, JIA Li-tao, LI De-bao, HOU Bo. Performance study of Pt-CeO2/ZSM-22 catalyzed n-heptane isomerization reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1805-1813. doi: 10.19906/j.cnki.JFCT.2023031
Citation: LI Zi-xin, XI Hong-juan, CHEN Xiao-yan, MA Zhong-yi, JIA Li-tao, LI De-bao, HOU Bo. Performance study of Pt-CeO2/ZSM-22 catalyzed n-heptane isomerization reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1805-1813. doi: 10.19906/j.cnki.JFCT.2023031

Pt-CeO2/ZSM-22催化正庚烷异构化反应性能研究

doi: 10.19906/j.cnki.JFCT.2023031
基金项目: 山西省科技重大专项项目(202005D121002)和山西省重点研发计划(高新)项目(201903D121034)资助
详细信息
    通讯作者:

    Tel: 0351-4040428, E-mail: xhj20050314@sxicc.ac.cn

    houbo@sxicc.ac.cn,

  • 中图分类号: O643

Performance study of Pt-CeO2/ZSM-22 catalyzed n-heptane isomerization reaction

Funds: The project was supported by Science and Technology Major Project of Shanxi Province (202005D121002) and Key R&D Projects of Shanxi Province (201903D121034)
  • 摘要: 结合浸渍法和物理混合法调控金属活性中心Pt的位点,使其单独落位到ZSM-22分子筛或氧化铈载体上,从而分别得到金属-酸双中心位点的间距达到原子级接触的Pt-ZSM-22/CeO2催化剂和保持纳米级间距的Pt-CeO2/ZSM-22催化剂。利用球差电镜、XRD、BET、H2-TPR和XPS等手段,表征了两种催化剂的物化性质,并对其正庚烷异构化反应性能进行了研究。另外,考察了不同还原温度下Pt-CeO2/ZSM-22催化剂的物化性质和反应性能变化。结果显示,金属-酸中心保持纳米级间距Pt-CeO2/ZSM-22催化剂具有更高的正庚烷异构化活性和异构烃收率,这是由于Pt在CeO2载体上呈原子级分散的原因。在Pt-CeO2/ZSM-22催化剂还原过程中,CeO2载体释放更多的氧空位有助于延缓金属Pt的聚集且有利于庚烷分子的吸附。当还原预处理温度为300 ℃时,庚烷转化率和庚烷异构烃收率分别为79.2%和75.4%,异构化选择性达到95.2%。
  • FIG. 2807.  FIG. 2807.

    FIG. 2807.  FIG. 2807.

    图  1  新鲜Pt-ZSM-22/CeO2和 Pt-CeO2/ZSM-22的XRD谱图

    Figure  1  XRD spectra of fresh Pt-ZSM-22/CeO2 and Pt-CeO2/ZSM-22

    a: ZSM-22; b: Pt-ZSM-22/CeO2; c: Pt-CeO2/ZSM-22

    图  2  新鲜Pt-ZSM-22/CeO2和 新鲜Pt-CeO2/ZSM-22催化剂以及Pt-CeO2的STEM图

    Figure  2  STEM image of fresh Pt-ZSM-22/CeO2 and Pt-CeO2/ZSM-22 catalyst and Pt-CeO2a: Pt-ZSM-22/CeO2; b: Pt-CeO2/ZSM-22; c: Pt-CeO2

    图  3  不同温度还原后Pt-CeO2样品的XRD谱图

    Figure  3  XRD patterns of catalysts at different temperature reduction

    图  4  新鲜Pt-ZSM-22以及不同温度还原后Pt-CeO2的TEM图

    图a为新鲜Pt-ZSM-22样品,图b、c、d和e分别Pt-CeO2经过为200、300、400和500 ℃还原后的样品

    Figure  4  TEM image of fresh Pt-ZSM-22 samples and Pt-CeO2 samples after reduction at different temperatures

    图  5  不同温度还原下Pt-CeO2的H2-TPR谱图

    Figure  5  H2-TPR spectra of Pt-CeO2 samples at different temperature reductions

    图  6  不同温度还原后Pt-CeO2的CO红外光谱谱图

    Figure  6  CO chemisorption infrared spectra of Pt-CeO2 samples reduced at different temperatures

    图  7  不同温度还原后Pt-CeO2样品的 Pt 4f、O 1s和Ce 3d的XPS谱图

    Figure  7  XPS spectra of Pt 4f, O 1s and Ce 3d of Pt-CeO2 samples at different temperature reductions

    图  8  金属-酸双位点原子级接触Pt-ZSM-22/CeO2和纳米级间距Pt-CeO2/ZSM-22催化剂的庚烷异构化反应性能

    Figure  8  Performance of metal-acid bidentate contact Pt-ZSM-22/CeO2 and nanoscale spaced Pt-CeO2/ZSM-22 catalysts for heptane isomerization reaction

    图  9  还原预处理温度对Pt-CeO2/ZSM-22催化正庚烷异构化性能的影响

    Figure  9  Effect of reduction pretreatment temperature on the performance of Pt-CeO2/ZSM-22-catalyzed n-heptane isomerization

    表  1  两种催化剂的织构性质

    Table  1  Texture properties of two types of catalysts

    SampleSBETa /(m2·g−1)dporeb /nmvporec /(cm3·g−1)vmicrod /(cm3·g−1)
    Pt-R-Z196.05.90.290.06
    Pt-Z-R193.96.40.310.06
    a: BET surface area, b: average pore diameter, c: total pore volume, d: t-plot micropore volume
    下载: 导出CSV

    表  2  不同温度还原预处理后Pt-CeO2的织构性质

    Table  2  Texture properties of samples after reduction pretreatment at different temperatures

    SampleSBETa /(m2·g−1)dporeb /nmvporec /(cm3·g−1)Ptd /%
    Pt-ZSM-220.83
    Pt-CeO223.319.90.120.79
    Pt-CeO2-H2-20022.319.10.11-
    Pt-CeO2-H2-30022.218.10.10
    Pt-CeO2-H2-40024.718.20.11
    Pt-CeO2-H2-50023.818.50.11
    a: BET surface area, b: average pore diameter, c: total pore volume, d: determined by ICP
    下载: 导出CSV
  • [1] ANDERSEN M, MEDFORD A J, NORSKOV J K, REUTER, K. Analyzing the case for bifunctional catalysis[J]. Angew Chem Int Ed,2016,55(17):5210−5214. doi: 10.1002/anie.201601049
    [2] GUISNET M. "Ideal" bifunctional catalysis over Pt-acid zeolites[J]. Catal Today,2013,218:123−134.
    [3] WANG D X, LIU J C, CHENG X S, KONG X, WU A P, TIAN C G, FU H G. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes[J]. Small Methods,2019,3(5):10.
    [4] LYU Y C, ZHAN W L, YU Z M, LIU X M, YANG Y, WANG X X, SONG C S, YAN Z F. One-pot synthesis of the highly efficient bifunctional Ni-SAPO-11 catalyst[J]. J Mater Sci Technol,2021,76:86−94. doi: 10.1016/j.jmst.2020.10.033
    [5] SONG Z, ZHANG Z, CHEN J, ZHU L, XIANG Y, XIA D. Progresses in Pt-M bimetallic bifunctional catalysts for isomerization of light alkanes[J]. Petrochem Technol,2017,46(1):1−8.
    [6] ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature,2015,528(7581):245−248. doi: 10.1038/nature16173
    [7] NAGAI Y, HIRABAYASHI T, DOHMAE K, TAKAGI N, MINAMI T, SHINJOH H, MATSUMOTO S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction[J]. J Catal,2006,242(1):103−109. doi: 10.1016/j.jcat.2006.06.002
    [8] MA Y Y, GAO W, ZHANG Z Y, ZHANG S, TIAN Z M, LIU Y X, HO J C, QU Y Q. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surf Sci Rep,2018,73(1):1−36. doi: 10.1016/j.surfrep.2018.02.001
    [9] YE X X, WANG H W, LIN Y, LIU X Y, CAO L N, GU J, LU J L. Insight of the stability and activity of platinum single atoms on ceria[J]. Nano Res,2019,12(6):1401−1409. doi: 10.1007/s12274-019-2351-6
    [10] MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B,2005,109(51):24380−24385. doi: 10.1021/jp055584b
    [11] LEE J, RYOU Y, CHAN X, KIM T J, KIM D H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt-CeO2 compared to CeO2[J]. J Phys Chem C,2016,120(45):25870−25879. doi: 10.1021/acs.jpcc.6b08656
    [12] SANCHEZ M G, GAZQUEZ J L. Oxygen vacancy model in strong metal support interaction[J]. J Catal,1987,104(1):120−135. doi: 10.1016/0021-9517(87)90342-3
    [13] QIAO B T, WANG A Q, YANG X F, ALLARD L F, JIANG Z, CUI Y T, LIU J Y, LI J, ZHANG T. Single-atom catalysis of CO oxidation using Pt-1/FeOx[J]. Nat Chem,2011,3(8):634−641.
    [14] WANG C L, GU X K, YAN H, LIN Y, LI J J, LIU D D, LI W X, LU J L. Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt-1 catalyst[J]. ACS Catal,2017,7(1):887−891. doi: 10.1021/acscatal.6b02685
    [15] WANG B F, CHEN B X, SUN Y H, XIAO H L, XU X X, FU M L, WU J L, CHEN L M, YE D Q. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt-CeO2 catalysts[J]. Appl Catal B: Environ,2018,238:328−38.
    [16] ZHANG Q S, BU J H, WANG J D, SUN C Y, ZHAO D Y, SHENG G Z, XIE X W, SUN M, YU L. Highly efficient hydrogenation of nitrobenzene to aniline over Pt-CeO2 catalysts: The shape effect of the support and key role of additional Ce3 + sites[J]. ACS Catal,2020,10(18):10350−63.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  118
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回