留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正负电荷关联转移促进的光催化低浓度苯酚矿化

高树功 魏旭晖 刘海峰 方峣 贾昆 向后奎 陈加藏

高树功, 魏旭晖, 刘海峰, 方峣, 贾昆, 向后奎, 陈加藏. 正负电荷关联转移促进的光催化低浓度苯酚矿化[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023035
引用本文: 高树功, 魏旭晖, 刘海峰, 方峣, 贾昆, 向后奎, 陈加藏. 正负电荷关联转移促进的光催化低浓度苯酚矿化[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023035
GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023035
Citation: GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023035

正负电荷关联转移促进的光催化低浓度苯酚矿化

doi: 10.19906/j.cnki.JFCT.2023035
基金项目: 国家自然科学基金(22172185,21773285)资助
详细信息
    通讯作者:

    Tel: 0351–4845811,E-mail: chenjiazang@sxicc.ac.cn

  • 中图分类号: O649.4

Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation

Funds: The project was supported by the National Natural Science Foundation of China (22172185,21773285)
  • 摘要: 光催化矿化难降解污染物(如苯酚)需要羟基自由基(•OH)进行开环反应。本研究通过Al掺杂削弱了TiO2表面对氧物种的吸附,有效促进光致•OH的生成。同时,Al元素还能降低TiO2的导带能级,继而降低半导体–助催化剂界面电子转移势垒而促进还原半反应。由于正负电荷的强关联性,还原半反应中电子的快速转移可提高半导体内空穴浓度,加快•OH的生成。此外,通过将催化剂固定在反应器的光入射内壁,还能避免由污染物竞争光吸收所引起的光子损失。基于这些优点,有望实现废水中低浓度苯酚的高效光催化矿化。
  • 图  1  (a)苯酚开环和矿化示意图[8],(b)光催化反应的基本过程及其时间尺度[10],绿线和红线分别代表正副反应过程,(c)正负电荷内在关联性

    Figure  1  (a) Schematic diagram for ring–opening and mineralization of phenol[8], (b) The basic process of photocatalytic reaction and its timescale [10], The green and red arrows respectively represent the forward and side reactions, (c) Strong correlation between positive and negative charges

    图  2  Al掺杂前后的(a)XRD谱图,(b)UV–vis吸收光谱图,(c)TiO2及(d)Al-TiO2的SEM照片,(e)Al-TiO2的高角环形暗场像及元素分析(图中标尺长度为200 nm)

    Figure  2  (a) XRD patterns; (b) UV–vis absorption spectra; (c)、(d) SEM images of Al-TiO2 and TiO2; (e) the high angle annular dark field image and elemental mappings of Al-TiO2 (the scale bar shown in elemental mappings is 200 nm)

    图  3  (a)Al-TiO2的Al 2p XPS谱图,Al-TiO2和TiO2的(b)Ti 2p和(c)O 1S XPS谱图。由UPS谱图得到的Al-TiO2和TiO2(d)功函数和(e)结合能及(f)能带示意图

    Figure  3  (a) Al 2p XPS spectrum of Al-TiO2; (b) Ti 2p and (c) O 1s XPS spectra of Al-TiO2 and TiO2; (d) Work function; (e) binding energy; (f) the band alignment can be obtained from UPS spectra of Al-TiO2 and TiO2

    图  4  TiO2和Al-TiO2的RRDE行为,盘电流和环电流分别反映•OH的生成和捕获

    Figure  4  The RRDE behaviors of TiO2 and Al-TiO2, In this electrode configuration, the disk and ring currents respectively reflect the generation and capture of •OH

    图  5  分散于100 mL水杨酸溶液中的Al-TiO2和TiO2在光照下DHBA的产率以及根据捕获率所得的•OH的产率

    Figure  5  The generation rate of DHBA over Al-TiO2 and TiO2 dispersed in 100 mL salicylic acid solution under irradiation. The generation rate of •OH can be evaluated from the generated DHBA with consideration of the capture ratio

    图  6  Al-TiO2和TiO2在PBS溶液中的(a)水氧化和(b)氧还原反应中的伏安行为曲线

    Figure  6  The voltammetry behaviors of Al-TiO2 and TiO2 electrodes in (a) water oxidation and (b) oxygen reduction reaction. For the oxygen reduction reaction, the measurements were conducted when the rotating disk electrode was rotating at a speed of 1600 r/min

    图  7  (a)Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2电极在PBS溶液通氩条件下的OCP行为,以及由此获得的(b)τOCP(–dual)及(c)τSC。(d)导带的下移降低SC界面电子转移势垒高度示意图

    Figure  7  (a) OCP behaviors of Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 electrodes in argon bubbled PBS solution; The time constants including (b) τOCP(–dual) and (c) τSC can be obtained from the OCP curves; (d) Schematic diagram shows that the downshift of conduction band lowers the potential barrier for SC interfacial electron transfer

    图  8  Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2在PBS溶液通氧条件下的(a)OCP行为,以及由此获得的(b)τOCP(–dual)及(c)τSC

    Figure  8  (a) OCP behaviors, of Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 in oxygen bubbled PBS solution; The time constants such as (b) τOCP(–dual) and (c) τSC can be obtained from the OCP decay

    图  9  (a)TiO2光电化学体系在不同电势下产生的光生电流密度;(b)•OH的生成量和光生电子的收集量

    Figure  9  (a) The photocurrent density of TiO2 photochemical system under different potential; (b) The generation of •OH and the number of collected photogenerated electrons

    图  10  (a)光催化苯酚矿化固定床反应示意图;(b)Pt/Al-TiO2固定床和浆态床反应速率对比;(c)Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2光催化剂对苯酚(COD,100 mg/L)光催化矿化

    Figure  10  (a) Schematic diagram for fixed bed reactor of photocatalytic phenol mineralization; (b) Comparison of Pt/Al-TiO2 reaction rate between fixed bed and slurry suspension; (c) The photocatalytic mineralization of phenol (COD,100 mg/L) over Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 photocatalysts

  • [1] JIA K, WEI X H, XU Y, et al. Asymmetric potential barrier lowering promotes photocatalytic nonoxidative dehydrogenation of anhydrous methanol[J]. Appl Catal, A,2023,650:119009−119013. doi: 10.1016/j.apcata.2022.119009
    [2] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature,2020,581(7809):411−414. doi: 10.1038/s41586-020-2278-9
    [3] ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene–ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible–light irradiation[J]. J Mol Liq,2021,324:114696−114706. doi: 10.1016/j.molliq.2020.114696
    [4] DE S FURTADO R X, SABATINI C A, ZAIAT M, et al. Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM)[J]. J Water Process Eng, 2021, 41. 101986–101993.
    [5] PASINI S M, VALÉRIO A, YIN G L, et al. An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment[J]. J Water Process Eng, 2021, 40. 101827–101842.
    [6] 彭书传, 王诗生, 陈天虎, 等. 负载型TiO2光催化氧化法处理硝基苯酚工业废水[J]. 工业水处理,2003,23(11):34−36.

    PENG Shu-chuan, WANG Shi-sheng, CHEN Tian-hu, HUANG Chuan-hui, LI Hui. Treatment of nitrophenol wastewater by heterogeneous photocatalytic oxidation process[J]. Ind Water Treat,2003,23(11):34−36.
    [7] 王九思, 赵红花, 宋光顺, 等. 负载型TiO2固定相光催化降解含酚废水的试验研究[J]. 环境污染治理技术与设备[J],2004,5(10):26−29.

    WANG Jiu-si, ZHAO Hong-hua, SONG Guang-shun, MA Yan-fei. Experimental research on photocatalytic degradation phenolic wastewater by immobilized TiO2 fixed phase[J]. Tech Equip Environ Pollut Control,2004,5(10):26−29.
    [8] CHANDANA L, SUBRAHMANYAM C. Degradation and mineralization of aqueous phenol by an atmospheric pressure catalytic plasma reactor[J]. J Environ Chem Eng,2018,6(3):3780−3786. doi: 10.1016/j.jece.2016.11.014
    [9] LUO T, WANG Z J, WEI X H, et al. Surface enrichment promotes the decomposition of benzene from air[J]. Catal Sci Technol,2022,12(7):2340−2345. doi: 10.1039/D1CY02296B
    [10] XIANG H K, WANG Z J, CHEN J Z. Revealing and facilitating the rate–determining step for efficient sunlight–driven photocatalysis[J]. J Phys Chem Lett,2021,12(32):7665−7670. doi: 10.1021/acs.jpclett.1c02101
    [11] XIANG H K, WANG Z J, CHEN J Z. Revealing the role of elementary doping in photocatalytic phenol mineralization[J]. Chin J Struc Chem,2022,41(9):2209069−2209073.
    [12] SARENTUYA, BAI H D, AMURISHANA. Synthesis of Bi2S3–TiO2 nanocomposite and its electrochemical and enhanced photocatalytic properties for phenol degradation[J]. Int J Electrochem Sci,2023,18(4):100071−100079. doi: 10.1016/j.ijoes.2023.100071
    [13] AL–HASANI H, AL–SABAHI J, AL–GHAFRI B, et al. Effect of water quality in photocatalytic degradation of phenol using zinc oxide nanorods under visible light irradiation[J]. J Water Process Eng,2022,49:103121−103133. doi: 10.1016/j.jwpe.2022.103121
    [14] NOSAKA Y, NOSAKA A Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis[J]. Chem Rev,2017,117(17):11302−11336. doi: 10.1021/acs.chemrev.7b00161
    [15] TAO H B, FANG L W, CHEN J Z, et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. J Am Chem Soc,2016,138(31):9978−9985. doi: 10.1021/jacs.6b05398
    [16] FRIEDMANN D, MENDIVE C, BAHNEMANN D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis[J]. Appl Catal, B, 2010, 99(3–4): 398–406.
    [17] HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004
    [18] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chem Rev,2014,114(19):9919−9986. doi: 10.1021/cr5001892
    [19] WANG Z J, MEI B B, CHEN J Z. Removing semiconductor–cocatalyst interfacial electron transfer induced bottleneck for efficient photocatalysis: A case study on Pt/CdS photocatalyst[J]. J Catal,2022,408:270−278. doi: 10.1016/j.jcat.2022.03.014
    [20] XU Y, WANG Z J, XIANG H K, et al. Revealing the role of electronic doping for developing cocatalyst–free semiconducting photocatalysts[J]. J Phys Chem Lett,2022,13(8):2039−2045. doi: 10.1021/acs.jpclett.2c00193
    [21] YANG D L, WANG Z J, CHEN J Z. Revealing the role of surface elementary doping in photocatalysis[J]. Catal Sci Technol,2022,12(11):3634−3638. doi: 10.1039/D2CY00410K
    [22] 刘诺, 钟志亲, 张桂平, 等. 半导体物理导论[M]. 北京: 科学出版社, 2014: 86–87.

    LIU Nuo, ZHONG Zhi-qin, ZHANG Gui-ping, CHEN Jin-ju. Introduction to semiconductor physics[M]. Beijing: Science Press, 2014: 86–87.
    [23] WEI X H, LIU H F, GAO S G, et al. Photocatalyst: to be dispersed or to be immobilized? The crucial role of electron transport in photocatalytic fixed bed reaction[J]. J Phys Chem Lett,2022,13(41):9642−9648. doi: 10.1021/acs.jpclett.2c02581
    [24] WU T Z, SUN S N, SONG J J, et al. Iron–facilitated dynamic active–site generation on spinel CoAl2O4 with self–termination of surface reconstruction for water oxidation[J]. Nat Catal,2019,2(9):763−772. doi: 10.1038/s41929-019-0325-4
    [25] Wang H Y, Hung S F, Chen H Y, et al. In Operando Identification of Geometrical–Site–Dependent Water Oxidation Activity of Spinel Co3O4[J]. J Am Chem Soc,2016,138(1):36−39. doi: 10.1021/jacs.5b10525
    [26] HOEX B, HEIL S B S, LANGEREIS E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma–assisted atomic layer deposited Al2O3[J]. Appl Phys Lett,2006,89(4):042112−042114. doi: 10.1063/1.2240736
    [27] KAUSHIK R, SAMAL P K, HALDER A. Degradation of Fluoroquinolone–Based Pollutants and Bacterial Inactivation by Visible–Light–Active Aluminum–Doped TiO2 Nanoflakes[J]. ACS Appl Nano Mater,2019,2(12):7898−7909. doi: 10.1021/acsanm.9b01913
    [28] MURASHKINA A A, MURZIN P D, RUDAKOVA A V, et al. EMELINE A V, BAHNEMANN D W. Influence of the Dopant Concentration on the Photocatalytic Activity: Al–Doped TiO2[J]. J Phys Chem C,2015,119(44):24695−24703. doi: 10.1021/acs.jpcc.5b06252
    [29] Floyd R A, Watson J J, Wong P K. Sensitive assay of hydroxyl free–radical formation utilizing high–pressure liquid–chromatography with electrochemical detection of phenol and salicylate hydroxylation products[J]. J Biochem Biophys Methods, 1984, 10(3–4): 221–235.
  • 加载中
图(10)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  100
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-20
  • 网络出版日期:  2023-05-06

目录

    /

    返回文章
    返回