留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正负电荷关联转移促进的光催化低浓度苯酚矿化

高树功 魏旭晖 刘海峰 方峣 贾昆 向后奎 陈加藏

高树功, 魏旭晖, 刘海峰, 方峣, 贾昆, 向后奎, 陈加藏. 正负电荷关联转移促进的光催化低浓度苯酚矿化[J]. 燃料化学学报(中英文), 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035
引用本文: 高树功, 魏旭晖, 刘海峰, 方峣, 贾昆, 向后奎, 陈加藏. 正负电荷关联转移促进的光催化低浓度苯酚矿化[J]. 燃料化学学报(中英文), 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035
GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035
Citation: GAO Shugong, WEI Xuhui, LIU Haifeng, FANG Yao, JIA Kun, XIANG Houkui, CHEN Jiazang. Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 87-96. doi: 10.19906/j.cnki.JFCT.2023035

正负电荷关联转移促进的光催化低浓度苯酚矿化

doi: 10.19906/j.cnki.JFCT.2023035
基金项目: 国家自然科学基金(22172185,21773285)资助
详细信息
    通讯作者:

    Tel: 0351-4845811,E-mail: chenjiazang@sxicc.ac.cn

  • 中图分类号: O649.4

Photocatalytic mineralization of low concentration phenol facilitated by transfer of positive and negative charges correlation

Funds: The project was supported by the National Natural Science Foundation of China (22172185,21773285)
  • 摘要: 光催化矿化难降解污染物(如苯酚)需要羟基自由基(·OH)进行开环反应。本研究通过Al掺杂削弱了TiO2表面对氧物种的吸附,有效促进光致·OH的生成。同时,Al元素还能降低TiO2的导带能级,继而降低半导体-助催化剂界面电子转移势垒而促进还原半反应。由于正负电荷的强关联性,还原半反应中电子的快速转移可提高半导体内空穴浓度,加快·OH的生成。此外,通过将催化剂固定在反应器的光入射内壁,还能避免由污染物竞争光吸收所引起的光子损失。基于这些优点,有望实现废水中低浓度苯酚的高效光催化矿化。
  • FIG. 2883.  FIG. 2883.

    FIG. 2883.  FIG. 2883.

    图  1  (a)苯酚开环和矿化示意图[8](改编自Elsevier);(b)光催化反应的基本过程及其时间尺度[10](绿线和红线分别代表正副反应过程);(c)正负电荷内在关联性

    Figure  1  (a) Schematic diagram for ring-opening and mineralization of phenol[8] (Adapted from Elsevier); (b) The basic process of photocatalytic reaction and its timescale [10] (The green and red arrows respectively represent the forward and side reactions); (c) Strong correlation between positive and negative charges

    图  2  Al掺杂前后的(a)XRD谱图,(b)UV-vis吸收光谱图,(c)TiO2及(d)Al-TiO2的SEM照片,(e)Al-TiO2的高角环形暗场像及元素分析(图中标尺长度为200 nm)

    Figure  2  (a) XRD patterns; (b) UV-vis absorption spectra; (c), (d) SEM images of Al-TiO2 and TiO2; (e) the high angle annular dark field image and elemental mappings of Al-TiO2 (the scale bar shown in elemental mappings is 200 nm)

    图  3  (a)Al-TiO2的Al 2p XPS谱图;(b)和(c)Al-TiO2和TiO2的Ti 2p和O 1s XPS谱图;(d)由UPS谱图得到的Al-TiO2和TiO2功函数和(e)结合能及(f)能带示意图

    Figure  3  (a) Al 2p XPS spectrum of Al-TiO2; (b) Ti 2p and (c) O 1s XPS spectra of Al-TiO2 and TiO2; (d) Work function; (e) Binding energy; (f) The band alignment can be obtained from UPS spectra of Al-TiO2 and TiO2

    图  4  TiO2和Al-TiO2的RRDE行为,盘电流和环电流分别反映·OH的生成和捕获

    Figure  4  The RRDE behaviors of TiO2 and Al-TiO2 (In this electrode configuration, the disk and ring currents respectively reflect the generation and capture of ·OH)

    图  5  分散于100 mL水杨酸溶液中的Al-TiO2和TiO2在光照下DHBA的产率以及根据捕获率所得的·OH的产率

    Figure  5  The generation rate of DHBA over Al-TiO2 and TiO2 dispersed in 100 mL salicylic acid solution under irradiation, and the generation rate of ·OH can be evaluated from the generated DHBA with consideration of the capture ratio

    图  6  Al-TiO2和TiO2在PBS溶液中的(a)水氧化和(b)氧还原反应中的伏安行为曲线

    Figure  6  The voltammetry behaviors of Al-TiO2 and TiO2 electrodes in (a) water oxidation and (b) oxygen reduction reaction (For the oxygen reduction reaction, the measurements were conducted when the rotating disk electrode was rotating at a speed of 1600 r/min)

    图  7  (a)Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2电极在PBS溶液通氩条件下的OCP行为,以及由此获得的(b)τOCP-(dual)及(c)τSC;(d)导带的下移降低SC界面电子转移势垒高度示意图

    Figure  7  (a) OCP behaviors of Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 electrodes in argon bubbled PBS solution; The time constants including (b) τOCP-(dual) and (c) τSC can be obtained from the OCP curves; (d) Schematic diagram shows that the downshift of conduction band lowers the potential barrier for SC interfacial electron transfer

    图  8  Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2在PBS溶液通氧条件下的(a)OCP行为,以及由此获得的(b)τOCP-(dual)及(c)τSC

    Figure  8  (a) OCP behaviors, of Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 in oxygen bubbled PBS solution; the time constants such as (b) τOCP-(dual) and (c) τSC can be obtained from the OCP decay

    图  9  (a)TiO2光电化学体系在不同电势下产生的光生电流密度;(b)·OH的生成量和光生电子的收集量

    Figure  9  (a) The photocurrent density of TiO2 photochemical system under different potential; (b) The generation of ·OH and the number of collected photogenerated electrons

    图  10  (a)光催化苯酚矿化固定床反应示意图;(b)Pt/Al-TiO2固定床和浆态床反应速率对比;(c)Al-TiO2、TiO2、Pt/Al-TiO2和Pt/TiO2光催化剂对苯酚(COD, 100 mg/L)光催化矿化

    Figure  10  (a) Schematic diagram for fixed bed reactor of photocatalytic phenol mineralization; (b) Comparison of Pt/Al-TiO2 reaction rate between fixed bed and slurry suspension; (c) The photocatalytic mineralization of phenol (COD,100 mg/L) over Al-TiO2, TiO2, Pt/Al-TiO2, and Pt/TiO2 photocatalysts

  • [1] JIA K, WEI X H, XU Y, et al. Asymmetric potential barrier lowering promotes photocatalytic nonoxidative dehydrogenation of anhydrous methanol[J]. Appl Catal A: Gen,2023,650:119009−119013. doi: 10.1016/j.apcata.2022.119009
    [2] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature,2020,581(7809):411−414. doi: 10.1038/s41586-020-2278-9
    [3] ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation[J]. J Mol Liq,2021,324:114696−114706. doi: 10.1016/j.molliq.2020.114696
    [4] DE S FURTADO R X, SABATINI C A, ZAIAT M, et al. Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM)[J]. J Water Process Eng, 2021, 41: 101986–101993.
    [5] PASINI S M, VALÉRIO A, YIN G L, et al. An overview on nanostructured TiO2-containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment[J]. J Water Process Eng, 2021, 40: 101827–101842.
    [6] 彭书传, 王诗生, 陈天虎, 等. 负载型TiO2光催化氧化法处理硝基苯酚工业废水[J]. 工业水处理,2003,23(11):34−36.

    PENG Shuchuan, WANG Shisheng, CHEN Tianhu, et al. Treatment of nitrophenol wastewater by heterogeneous photocatalytic oxidation process[J]. Ind Water Treat,2003,23(11):34−36.
    [7] 王九思, 赵红花, 宋光顺, 等. 负载型TiO2固定相光催化降解含酚废水的试验研究[J]. 环境污染治理技术与设备[J],2004,5(10):26−29.

    WANG Jiu-si, ZHAO Hong-hua, SONG Guang-shun, MA Yan-fei. Experimental research on photocatalytic degradation phenolic wastewater by immobilized TiO2 fixed phase[J]. Tech Equip Environ Pollut Control,2004,5(10):26−29.
    [8] CHANDANA L, SUBRAHMANYAM C. Degradation and mineralization of aqueous phenol by an atmospheric pressure catalytic plasma reactor[J]. J Environ Chem Eng,2018,6(3):3780−3786. doi: 10.1016/j.jece.2016.11.014
    [9] LUO T, WANG Z J, WEI X H, et al. Surface enrichment promotes the decomposition of benzene from air[J]. Catal Sci Technol,2022,12(7):2340−2345. doi: 10.1039/D1CY02296B
    [10] XIANG H K, WANG Z J, CHEN J Z. Revealing and facilitating the rate-determining step for efficient sunlight-driven photocatalysis[J]. J Phys Chem Lett,2021,12(32):7665−7670. doi: 10.1021/acs.jpclett.1c02101
    [11] XIANG H K, WANG Z J, CHEN J Z. Revealing the role of elementary doping in photocatalytic phenol mineralization[J]. Chin J Struc Chem,2022,41(9):2209069−2209073.
    [12] SARENTUYA, BAI H D, AMURISHANA. Synthesis of Bi2S3-TiO2 nanocomposite and its electrochemical and enhanced photocatalytic properties for phenol degradation[J]. Int J Electrochem Sci,2023,18(4):100071−100079. doi: 10.1016/j.ijoes.2023.100071
    [13] HASANI H, SABAHI J, GHAFRI B, et al. Effect of water quality in photocatalytic degradation of phenol using zinc oxide nanorods under visible light irradiation[J]. J Water Process Eng,2022,49:103121−103133. doi: 10.1016/j.jwpe.2022.103121
    [14] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chem Rev,2017,117(17):11302−11336. doi: 10.1021/acs.chemrev.7b00161
    [15] TAO H B, FANG L W, CHEN J Z, et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. J Am Chem Soc,2016,138(31):9978−9985. doi: 10.1021/jacs.6b05398
    [16] FRIEDMANN D, MENDIVE C, BAHNEMANN D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis[J]. Appl Catal B: Environ, 2010, 99(3/4): 398–406.
    [17] HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004
    [18] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chem Rev,2014,114(19):9919−9986. doi: 10.1021/cr5001892
    [19] WANG Z J, MEI B B, CHEN J Z. Removing semiconductor–cocatalyst interfacial electron transfer induced bottleneck for efficient photocatalysis: A case study on Pt/CdS photocatalyst[J]. J Catal,2022,408:270−278. doi: 10.1016/j.jcat.2022.03.014
    [20] XU Y, WANG Z J, XIANG H K, et al. Revealing the role of electronic doping for developing cocatalyst–free semiconducting photocatalysts[J]. J Phys Chem Lett,2022,13(8):2039−2045. doi: 10.1021/acs.jpclett.2c00193
    [21] YANG D L, WANG Z J, CHEN J Z. Revealing the role of surface elementary doping in photocatalysis[J]. Catal Sci Technol,2022,12(11):3634−3638. doi: 10.1039/D2CY00410K
    [22] 刘诺, 钟志亲, 张桂平, 等. 半导体物理导论[M]. 北京: 科学出版社, 2014: 86–87.

    LIU Nuo, ZHONG Zhiqin, ZHANG Guiping, CHEN Jinju. Introduction to Semiconductor Physics[M]. Beijing: Science Press, 2014: 86–87.
    [23] WEI X H, LIU H F, GAO S G, et al. Photocatalyst: to be dispersed or to be immobilized? The crucial role of electron transport in photocatalytic fixed bed reaction[J]. J Phys Chem Lett,2022,13(41):9642−9648. doi: 10.1021/acs.jpclett.2c02581
    [24] WU T Z, SUN S N, SONG J J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J]. Nat Catal,2019,2(9):763−772. doi: 10.1038/s41929-019-0325-4
    [25] WANG H Y, HUNG S F, CHEN H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J Am Chem Soc,2016,138(1):36−39. doi: 10.1021/jacs.5b10525
    [26] HOEX B, HEIL S B S, LANGEREIS E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3[J]. Appl Phys Lett,2006,89(4):042112−042114. doi: 10.1063/1.2240736
    [27] KAUSHIK R, SAMAL P K, HALDER A. Degradation of fluoroquinolone-based pollutants and bacterial inactivation by visible-light-active aluminum-doped TiO2 nanoflakes[J]. ACS Appl Nano Mater,2019,2(12):7898−7909. doi: 10.1021/acsanm.9b01913
    [28] MURASHKINA A A, MURZIN P D, RUDAKOVA A V, et al. EMELINE A V, BAHNEMANN D W. Influence of the dopant concentration on the photocatalytic activity: Al–doped TiO2[J]. J Phys Chem C,2015,119(44):24695−24703. doi: 10.1021/acs.jpcc.5b06252
    [29] FLOYD R A, WATSON J J, WONG P K. Sensitive assay of hydroxyl free-radical formation utilizing high-pressure liquid-chromatography with electrochemical detection of phenol and salicylate hydroxylation products[J]. J Biochem Biophys Methods, 1984, 10(3/4): 221–235.
  • 加载中
图(11)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  165
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-20
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回