留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lewis酸碱调控镧掺杂氧化锌催化CO2转化制碳酸乙烯酯

杜昌元 苏倩 许振洋 付梦倩 贾松岩 董丽

杜昌元, 苏倩, 许振洋, 付梦倩, 贾松岩, 董丽. Lewis酸碱调控镧掺杂氧化锌催化CO2转化制碳酸乙烯酯[J]. 燃料化学学报(中英文), 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060
引用本文: 杜昌元, 苏倩, 许振洋, 付梦倩, 贾松岩, 董丽. Lewis酸碱调控镧掺杂氧化锌催化CO2转化制碳酸乙烯酯[J]. 燃料化学学报(中英文), 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060
DU Changyuan, SU Qian, XU Zhenyang, FU Mengqian, JIA Songyan, DONG Li. Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060
Citation: DU Changyuan, SU Qian, XU Zhenyang, FU Mengqian, JIA Songyan, DONG Li. Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060

Lewis酸碱调控镧掺杂氧化锌催化CO2转化制碳酸乙烯酯

doi: 10.19906/j.cnki.JFCT.2023060
基金项目: 国家自然科学基金 (22178356, 22078329, 21890763)资助
详细信息
    通讯作者:

    Tel: 13810430696, E-mail: jiasongyan@126.com

    ldong@ipe.ac.cn

  • 中图分类号: O643.36

Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate

Funds: The project was supported by National Natural Science Foundation of China (22178356, 22078329, 21890763).
  • 摘要: 本研究以CO2和乙二醇(EG)合成碳酸乙烯酯(EC)为目标,设计合成一系列La掺杂ZnO催化剂,可对ZnO表面Lewis酸碱性位点调控,并在无助剂条件下研究了催化剂活性。La-ZnO-1%-550℃具有最好的催化活性,在130 ℃、4 MPa CO2、1 h条件下,EG的转化率为0.54%,EC的时空收率和选择性分别为7.326 mmol/(h∙g)和99%,并具有良好的稳定性。结合对催化剂的晶体结构、形貌和表面酸碱性等分析,结果显示,La均匀分布在ZnO中空纳米片中,经过550 ℃煅烧的La掺杂ZnO的表面具有最多的Lewis酸碱性位点,催化剂的催化活性随中强Lewis酸碱性位点增多而升高。
  • FIG. 3009.  FIG. 3009.

    FIG. 3009.  FIG. 3009.

    图  1  CO2与乙二醇合成碳酸乙烯酯

    Figure  1  Synthesis of ethylene carbonate by CO2 and ethylene glycol

    图  2  催化剂的(a)XRD和(b)FT-IR谱图

    Figure  2  (a) XRD and (b) FT-IR images of the catalysts

    图  3  (a)和(b)为La-ZnO-1%-550℃的SEM图;(c)、(d)、(e)和(f)为La-ZnO-1%-550℃的EDS元素分布

    Figure  3  (a) and (b) are SEM images of La-ZnO-1%-550℃; (c), (d), (e) and (f) are EDS elemental distribution maps of La-ZnO-1%-550℃

    图  4  催化剂的(a)Zn 2p、(b)La 3d、(c)O 1s的XPS谱图

    Figure  4  XPS images of (a) Zn 2p, (b) La 3d, (c) O 1s of the catalysts

    图  5  催化剂的(a)Py-FTIR、 (b)NH3-TPD和(c)CO2-TPD谱图

    Figure  5  (a) Py-FTIR, (b) NH3-TPD and (c) CO2-TPD images of the catalysts

    图  6  EC时空收率与催化剂的中强Lewis酸(a)、碱(b)位点数量之间的关系

    Figure  6  Relationship between EC space-time yield and the number of moderate to strong Lewis acid (a) and base (b) sites of the catalyst

    图  7  (a)反应温度,(b)反应压力和(c)催化剂用量对EG和CO2合成EC的影响

    Figure  7  Effects of (a) reaction temperature, (b) reaction pressure and (c) catalyst dosage on EC synthesis by EG and CO2

    图  8  (a)La-ZnO-1%-550℃的循环使用性能,使用前后La-ZnO-1%-550℃的(b)XRD和(c)FT-IR谱图

    Figure  8  (a) Cycling performance of La-ZnO-1%-550℃, (b) XRD and (c)FT-IR images for before and after used La-ZnO-1%-550℃

    表  1  催化剂的各种状态氧占比和La占Zn的比例

    Table  1  The proportion of oxygen in various states of the catalyst and the proportion of La to Zn

    CatalystOL/%OV/%OC/%La/Zn/%
    ZnO-550℃19.2854.5326.200.0
    La-ZnO-1%-450℃24.4366.449.131.2
    La-ZnO-1%-550℃26.7658.0215.181.1
    La-ZnO-1%-700℃19.9669.1910.851.1
    下载: 导出CSV

    表  2  Py-FTIR和TPD结果定量酸碱位点数量

    Table  2  Number of acid-base sites quantified by Py-FTIR and TPD

    CatalystAcid/(mmol∙g−1) Base/(mmol∙g−1)B/L
    acid
    weakmoderateweakmoderate
    ZnO-550℃0.03520.0992 0.05040.07470.0424
    La-ZnO-1%-450℃0.09210.14250.08360.12630.0582
    La-ZnO-1%-550℃0.08160.37860.07850.23160.0315
    La-ZnO-1%-700℃0.09650.27180.06710.17590.0894
    下载: 导出CSV

    表  3  不同催化剂的催化活性

    Table  3  Catalytic activity of different catalysts

    CatalystxEG/%STYEC/
    (mmol∙h−1∙g−1)
    sEC/%
    000
    ZnO-550℃0.161.14199
    Ce-ZnO-1%-550℃0.110.97099
    Ni-ZnO-1%-550℃0.070.44699
    Co-ZnO-1%-550℃0.281.99599
    La-ZnO-1%-550℃0.644.71199
    La-ZnO-1%-450℃0.231.65199
    La-ZnO-1%-700℃0.322.86499
    CeO2-ZrO2a[4]1.331.330100
    Reaction conditions: 150 mmol EG, 0.1 g catalyst, 130 ℃, 4 MPa CO2 and 2 h; a: 100 mmol EG, 120 mmol acetonitrile (dehydrating agent), 0.5 g CeO2-ZrO2, 150 ℃, 3.5 MPa CO2 and 2 h.
    下载: 导出CSV

    表  4  反应时间对合成EC的影响

    Table  4  Effect of reaction time on the synthesis of EC

    Reaction time/hxEG/%STYEC/(mmol∙h−1∙g−1)sEC/%
    0.50.318.46199
    10.547.32699
    20.644.51199
    Reaction conditions: 150 mmol EG, 0.1 g La-ZnO-1%-550℃, 130 ℃ and 4 MPa CO2.
    下载: 导出CSV
  • [1] MÜLLER L J, KÄTELHÖN A, BRINGEZU S, et al. The carbon footprint of the carbon feedstock CO2[J]. Energy Environ Sci,2020,13(9):2979−2992. doi: 10.1039/D0EE01530J
    [2] DAS S, PEREZ-RAMIREZ J, GONG J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2020,49(10):2937−3004. doi: 10.1039/C9CS00713J
    [3] LIU W, WANG Y, ZHANG J, et al. Large particle spherical poly-ionic liquid-solid base catalyst for high-efficiency transesterification of ethylene carbonate to prepare dimethyl carbonate[J]. Fuel,2022,324:124580−124590. doi: 10.1016/j.fuel.2022.124580
    [4] TOMISHIGE K, YASUDA H, YOSHIDA Y, et al. Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide[J]. Green Chem,2004,6(4):201−214.
    [5] LIM Y N, LEE C, JANG H-Y. Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols[J]. Eur J Org Chem,2014,2014(9):1823−1826. doi: 10.1002/ejoc.201400031
    [6] HUANG S, LIU S, LI J, et al. Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates[J]. Catal Lett,2006,112(3−4):187−191. doi: 10.1007/s10562-006-0201-0
    [7] MEHTA S, JOSHI K. From molecular adsorption to decomposition of methanol on various ZnO facets: A periodic DFT study[J]. Appl Surf Sci,2022,602:154150−154157. doi: 10.1016/j.apsusc.2022.154150
    [8] XUE L, ZHANG C, SHI T, et al. Unraveling the improved CO2 adsorption and COOH* formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO[J]. Chem Eng J,2023,452:139701−139714. doi: 10.1016/j.cej.2022.139701
    [9] LI P, ZHU S, HU H, et al. Influence of defects in porous ZnO nanoplates on CO2 photoreduction[J]. Catal Today,2019,335:300−305. doi: 10.1016/j.cattod.2018.11.068
    [10] ZHU H, YUAN Z, SHEN Y, et al. Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction[J]. Sensors Actuat B-Chem,2022,373:132726−132741. doi: 10.1016/j.snb.2022.132726
    [11] JADHAV N H, SHINDE D R, SAKATE S S, et al. Ti(IV) doping: An effective strategy to boost Lewis acidic performance of ZnO catalyst in fluorescein dye synthesis[J]. Catal Commun,2019,120:17−22. doi: 10.1016/j.catcom.2018.11.008
    [12] SINGH K, NANCY, KAUR H, et al. ZnO and cobalt decorated ZnO NPs: Synthesis, photocatalysis and antimicrobial applications[J]. Chemosphere,2023,313:137322−137342. doi: 10.1016/j.chemosphere.2022.137322
    [13] TOMAZETT V K, CHACON G, MARIN G, et al. Ionic liquid confined spaces controlled catalytic CO2 cycloaddition of epoxides in BMIm. ZnCl3 and its supported ionic liquid phases[J]. J CO2 Util,2023,69:102400−102409. doi: 10.1016/j.jcou.2023.102400
    [14] ZONG X, JIN Y, LI Y, et al. Morphology-controllable ZnO catalysts enriched with oxygen-vacancies for boosting CO2 electroreduction to CO[J]. J CO2 Util,2022,61:102051−102060. doi: 10.1016/j.jcou.2022.102051
    [15] CHENG F, YANG J, YAN L, et al. Enhancement of La2O3 to Li-Mn/WO3/TiO2 for oxidative coupling of methane[J]. J Rare Earth,2020,38(2):167−174. doi: 10.1016/j.jre.2019.03.023
    [16] POORNAPRAKASH B, CHALAPATHI U, SUBRAMANYAM K, et al. Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics[J]. Ceram Int,2020,46(3):2931−2939. doi: 10.1016/j.ceramint.2019.09.289
    [17] AL-SULTAN F S, BASAHEL S N, NARASIMHARAO K. Yttrium oxide supported La2O3 nanomaterials for catalytic oxidative cracking of n-propane to olefins[J]. Catal Lett,2019,150(1):185−195.
    [18] RANJBARI A, DEMEESTERE K, KIM K-H, et al. Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study[J]. Appl Catal B: Environ,2023,324:122265−122283. doi: 10.1016/j.apcatb.2022.122265
    [19] SUN K, ZHAN G, ZHANG L, et al. Highly sensitive NO2 gas sensor based on ZnO nanoarray modulated by oxygen vacancy with Ce doping[J]. Sensor Actuat B-Chem,2023,379:133294−133304. doi: 10.1016/j.snb.2023.133294
    [20] YANG J, WANG H, YANG H, et al. Efficient electroreduction of CO2 to syngas over ZIF-8 derived oxygen vacancy-rich ZnO nanomaterials[J]. New J Chem,2023,47(10):4992−4998. doi: 10.1039/D2NJ05378K
    [21] SCOTTI N, DANGATE M, GERVASINI A, et al. Unraveling the role of low coordination sites in a Cu metal nanoparticle: A step toward the selective synthesis of second generation biofuels[J]. ACS Catal,2014,4(8):2818−2826. doi: 10.1021/cs500581a
    [22] LIN L, LIU J, ZHANG X, et al. Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite[J]. Ind Eng Chem Res,2020,59(37):16146−16160. doi: 10.1021/acs.iecr.0c02596
    [23] JU F, WU T, WANG M, et al. Effect of nitrogen compounds on reactive adsorption desulfurization over NiO/ZnO-Al2O3-SiO2 adsorbents[J]. Ind Eng Chem Res,2019,58(29):13401−13407. doi: 10.1021/acs.iecr.9b01682
    [24] JIN L, WANG Y. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy[J]. Phys Chem Chem Phys,2017,19(20):12992−13001. doi: 10.1039/C7CP01715D
    [25] GONG Z-J, LI Y-R, WU H-L, et al. Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst[J]. Appl Catal B: Environ,2020,265:118524−118536. doi: 10.1016/j.apcatb.2019.118524
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  81
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-08-14
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-08

目录

    /

    返回文章
    返回