[1] |
郭扬. 世界视域下新能源替代化石能源的驱动效应[J]. 中国人口·资源与环境,2022,32(5):14−22.GUO Yang. Driving effects of alternative new energy sources for fossil fuels in the context of the world[J]. China Population, Resources and Environment,2022,32(5):14−22.
|
[2] |
李亮荣, 杨小喆, 陈楚欣, 等. 半导体核壳材料光催化剂分解水制氢研究进展[J]. 无机盐工业,2023,55(3):10−20.LI Liang-rong, YANG Xiao-zhe, CHEN Chu-xin, et al. Research progress of photocatalytic water splitting of semiconductor core-shell materials for hydrogen production[J]. Inorg Chem Ind,2023,55(3):10−20.
|
[3] |
柴麒敏, 郭虹宇, 刘昌义, 等. 全球气候变化与中国行动方案——“十四五”规划期间中国气候治理(笔谈)[J]. 阅江学刊,2020,12(6):36−58.CHAI Qi-min, GUO Hong-yu, LIU Chang-yi, et al. Global climate change and China's action scheme: climate governance of China in the 14th five-year plan period from 2021 to 2025 (conversation by writing)[J]. Yuejiang Academic Journal,2020,12(6):36−58.
|
[4] |
LAKHERA S K, RAJAN A, RUGM T P, et al. A review on particulate photocatalytic hydrogen production system: progress made in achieving high energy conversion efficiency and key challenges ahead[J]. Renewable Sustainable Energy Rev,2021,152:111694. doi: 10.1016/j.rser.2021.111694
|
[5] |
安攀, 张庆慧, 杨状, 等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报,2022,80(12):1629−1642. doi: 10.6023/A22080362AN Pan, ZHANG Qing-hui, YANG Zhuang, et al. Research progress of photocatalytic water splitting for hydrogen production using MOF based catalysts[J]. Acta Chim Sin,2022,80(12):1629−1642. doi: 10.6023/A22080362
|
[6] |
WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
|
[7] |
JI G, XU X, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
|
[8] |
张文超. 采用零价铁/过硫酸盐体系对页岩气返排液废水处理的研究[J]. 四川化工,2020,23(1):54−58.ZHANG Wen-chao. Study on the treatment of shale gas flowback wastewater by zero–valent iron/persulfate system[J]. Sichuan Chem Ind,2020,23(1):54−58.
|
[9] |
于建国, 韩昫身, 金艳. 页岩气压裂返排液生物处理技术研究进展[J]. 石油与天然气化工,2022,51(5):131−138.YU Jian-guo, HAN Xu-shen, JIN Yan. Biological treatment of shale gas flowback and produced watew: a review[J]. Chem Eng Oil Gas,2022,51(5):131−138.
|
[10] |
黄飞, 陈湘萍, 杨和平. 页岩气压裂返排液处理工艺研究[J]. 环境科学与技术,2013,36(S1):174−176.HUANG Fei, CHEN Xiang-ping, YANG He-ping. The research of treatment process about fracturing flowback fluid in shale gas mining[J]. Environ Sci Technol,2013,36(S1):174−176.
|
[11] |
董刚, 陈锐. 页岩气压裂返排液处理技术研究进展[J]. 化学工程师,2023,37(4):73−78.DONG Gang, CHEN Rui. Application progress of shale gas fracturing flowback fluid treatment technology[J]. Chem Eng,2023,37(4):73−78.
|
[12] |
蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J/OL]. 燃料化学学报(中英文), 2023, 51: 1–8.JIANG Zao, XU Long-jun, LIU Chen-lun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater [J/OL]. J Fuel Chem Technol, 2023, 51: 1–8.
|
[13] |
ABDULLAH U, ALI M, PERVAIZ E. An Inclusive Review on Recent Advancements of Cadmium Sulfide Nanostructures and its Hybrids for Photocatalytic and Electrocatalytic Applications[J]. Mol Catal,2021,508:111575. doi: 10.1016/j.mcat.2021.111575
|
[14] |
LIU S, MA Y, CHI D, et al. Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater[J]. Int J Hydrogen Energ,2022,47(15):9220−9229. doi: 10.1016/j.ijhydene.2021.12.259
|
[15] |
CHEN L, XIE X, SU T, et al. Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co-S bond as a bridge for electron transfer[J] Appl Surf Sci, 2021, 567: 150849.
|
[16] |
MA W, ZHENG D, XIAO B, et al. An efficient photocatalytic system under visible light: In-situ growth cocatalyst Ni2P on the surface of CdS[J]. J Environ Chem Eng,2022,10(3):107822. doi: 10.1016/j.jece.2022.107822
|
[17] |
JIANG K, JUNG H, PHAM T, et al. Modification of NiTiO3 visible light-driven photocatalysts by Nb doping and NbOx heterojunction: Oxygen vacancy in the Nb-doped NiTiO3 structure[J]. J Alloys Compd,2021,861:158636. doi: 10.1016/j.jallcom.2021.158636
|
[18] |
LI H, WANG G, GONG H, et al. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution[J]. J Phys Chem C,2021,125(1):648−659. doi: 10.1021/acs.jpcc.0c10239
|
[19] |
YAN T, LIU H, JIN Z. Graphdiyne based ternary GD-Cul-NiTiO3 S-scheme heterjunction photocatalyst for hydrogen evolution[J]. ACS Appl Mater Interfaces,2021,13(21):24896−24906. doi: 10.1021/acsami.1c04874
|
[20] |
ALAM U, PANDEY A, VERMA N. An anthraquinone-integrated S-scheme-based NiTiO3-g-C3N4 composite with enhanced hydrogen production activity[J]. Int J Hydrogen Energ,2023,48(7):2532−2541. doi: 10.1016/j.ijhydene.2022.10.151
|
[21] |
HU M, SHU J, XU L, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energ,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
|
[22] |
GOMATHISANKAR P, HACHISUKA K, KATSUMATA H, et al. Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu[J]. Int J Hydrogen Energ,2013,38(27):11840−11846. doi: 10.1016/j.ijhydene.2013.06.131
|
[23] |
LIU X, SHU J, WANG H, et al. One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. J Phys Chem Solids,2023,172:111061. doi: 10.1016/j.jpcs.2022.111061
|
[24] |
QU Y, ZHOU W, JIANG L, et al. Novel heterogeneous CdS nanoparticles/NiTiO3 nanorods with enhanced visible-light-driven photocatalytic activity[J]. RSC Adv,2013,3(40):18305−18310. doi: 10.1039/c3ra42189a
|
[25] |
FENG C, CHEN Z, HOU J, et al. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light[J]. Chem Eng J,2018,345:404−413. doi: 10.1016/j.cej.2018.03.155
|
[26] |
DHINGRA S, SHARMA M, KRISHNAN V, et al. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2, 5-Bis(hydroxymethyl)furan[J]. J Colloid Interface Sci,2022,615:346−356. doi: 10.1016/j.jcis.2022.01.190
|
[27] |
ZOU Y, GUO C, CAO X, et al. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution[J]. J Environ Chem Eng,2021,9(6):106270. doi: 10.1016/j.jece.2021.106270
|
[28] |
WANG L, CHENG, ZHANG L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small,2021,17(41):2103447. doi: 10.1002/smll.202103447
|
[29] |
JIANG Z, XIAO C, YIN X, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
|
[30] |
XU J, WANG L, CAO X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light[J]. Chem Eng J,2016,283:816−825. doi: 10.1016/j.cej.2015.08.018
|