留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zn含量对Zn/ZSM-5催化剂表面Zn物种结构及催化性能的影响

耿蕊 刘亚聪 牛宪军 董梅 樊卫斌 秦张峰 王建国

耿蕊, 刘亚聪, 牛宪军, 董梅, 樊卫斌, 秦张峰, 王建国. Zn含量对Zn/ZSM-5催化剂表面Zn物种结构及催化性能的影响[J]. 燃料化学学报(中英文), 2024, 52(6): 800-808. doi: 10.19906/j.cnki.JFCT.2023089
引用本文: 耿蕊, 刘亚聪, 牛宪军, 董梅, 樊卫斌, 秦张峰, 王建国. Zn含量对Zn/ZSM-5催化剂表面Zn物种结构及催化性能的影响[J]. 燃料化学学报(中英文), 2024, 52(6): 800-808. doi: 10.19906/j.cnki.JFCT.2023089
GENG Rui, LIU Yacong, NIU Xianjun, DONG Mei, FAN Weibin, QIN Zhangfeng, WANG Jianguo. Effect of zinc content on the structure of Zn species and catalytic properties over Zn/ZSM-5[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 800-808. doi: 10.19906/j.cnki.JFCT.2023089
Citation: GENG Rui, LIU Yacong, NIU Xianjun, DONG Mei, FAN Weibin, QIN Zhangfeng, WANG Jianguo. Effect of zinc content on the structure of Zn species and catalytic properties over Zn/ZSM-5[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 800-808. doi: 10.19906/j.cnki.JFCT.2023089

Zn含量对Zn/ZSM-5催化剂表面Zn物种结构及催化性能的影响

doi: 10.19906/j.cnki.JFCT.2023089
基金项目: 国家重点研发计划(2020YFB0606402), 国家自然科学基金(21991092, 22272195), 山西省高等学校科技创新项目(2023L312)和晋中学院博士专项资金资助
详细信息
    通讯作者:

    Tel: 0351-4046736 , Fax: 0351-4041153 , E-mail: niuxj@jzxy.edu.cn (NIU)

    mdong@sxicc.ac.cn (DONG)

  • 中图分类号: O643

Effect of zinc content on the structure of Zn species and catalytic properties over Zn/ZSM-5

Funds: The project was supported by National Key R&D Program of China (2020YFB0606402),National Natural Science Foundation of China (21991092, 22272195), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2023L312) and Jinzhong University Research Funds for Doctor.
  • 摘要: HZSM-5(Si/Al=30)为载体,用等体积浸渍法合成了系列不同Zn负载量的双功能Zn/ZSM-5催化剂,考察了Zn负载量在乙烯芳构化过程中的催化性能。用X射线粉末衍射(XRD)、N2吸附-脱附和吡啶吸附红外光谱(Py-FTIR)方法考察了催化剂的结构和酸性,用电感耦合等离子发射光谱(ICP)、紫外可见光谱(UV-vis DRS)、X射线吸收精细结构(XAFS)技术解析了Zn物种的结构及其流失行为。结果表明,Zn含量对其在HZSM-5上的存在状态及催化乙烯芳构化反应性能均有明显的影响,具有较多活性六配位ZnOH+物种的1.5%-Zn(IM)/Z5催化剂表现出较高的芳烃选择性和催化剂稳定性,且表现出较低的Zn流失速率。
  • FIG. 3155.  FIG. 3155.

    FIG. 3155.  FIG. 3155.

    图  1  HZSM-5和x%-Zn(IM)/Z5催化剂上乙烯转化率(a)和产物分布(b)随时间的变化

    Figure  1  Ethylene conversion and product distribution of ethylene aromatization over the HZSM-5 and x%-Zn(IM)/Z5 catalysts

    图  2  HZSM-5和x%-Zn(IM)/Z5催化剂的XRD谱图

    Figure  2  XRD patterns of the HZSM-5 and x%-Zn(IM)/Z5 catalysts

    图  3  HZSM-5和x%-Zn(IM)/Z5催化剂的Py-FTIR谱图

    Figure  3  Py-FTIR patterns of the HZSM-5 and x%-Zn(IM)/Z5 catalysts

    图  4  x%-Zn(IM)/Z5催化剂的UV-vis谱图(a)及其拟合结果(b)

    Figure  4  UV-vis patterns of the x%-Zn(IM)/Z5 catalysts (a) and the deconvolved results (b)

    图  5  金属Zn、ZnO和x%-Zn(IM)/Z5样品的XANES (a)谱图、EXAFS的谱图 (b)和拟合谱图 (c)

    Figure  5  Zn K-edge XANES (a)、EXAFS spectra (b) and the fitting (c) of Zn foil, ZnO and x%-Zn(IM)/Z5 catalysts

    图  6  x%-Zn(IM)/Z5样品XANES谱图的LCF分析(a)−(d)及其拟合结果(e)

    Figure  6  LCF analysis of the XANES spectra collected for x%-Zn(IM)/Z5 (a)−(d) and the fitting result (e)

    表  1  HZSM-5和x%-Zn(IM)/Z5催化剂的结构性质和酸性

    Table  1  Textural properties and acidic properties of the HZSM-5 and x%-Zn(IM)/Z5 catalysts

    Catalyst Surface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Acidity by
    Py-FTIR
    BET total micro meso L/B
    HZSM-5 385 0.379 0.113 0.266 0.30
    1.5%-Zn(IM)/Z5 364 0.366 0.110 0.256 2.23
    2%-Zn(IM)/Z5 345 0.350 0.105 0.245 3.96
    3%-Zn(IM)/Z5 348 0.360 0.106 0.254 4.64
    4%-Zn(IM)/Z5 337 0.352 0.105 0.247 5.61
    下载: 导出CSV

    表  2  不同Zn负载量新鲜和失活x%-Zn(IM)/Z5催化剂上Zn含量

    Table  2  Zn contents of the fresh an deactivation x%-Zn(IM)/Z5 catalysts

    Catalyst Zn content w/% Reaction time/h Zn loss rate/(%·h−1)
    fresh catalysts deactivation catalysts
    1.5%-Zn(IM)/Z5 1.54 1.40 78.00 0.12
    2%-Zn(IM)/Z5 1.81 1.64 54.00 0.17
    3%-Zn(IM)/Z5 2.78 2.51 56.00 0.17
    4%-Zn(IM)/Z5 3.70 3.14 48.00 0.32
    下载: 导出CSV

    表  3  ZnO和x%-Zn(IM)/Z5催化剂的XAFS拟合参数

    Table  3  EXAFS fit parameters of ZnO and x%-Zn(IM)/Z5 catalysts

    Sample E0/eV Zn K-edge EXAFS fit parameters a
    contribution CN R ${{S}}_0^2 $ σ2 R-factor
    Zn 9658.7
    ZnO 9661.7 Zn-O 4.0(±0.6) 1.97(±0.01) 0.904 0.004(±0.002) 0.007
    1.5%-Zn(IM)/Z5 9664.1 Zn-O 5.4(±0.3) 2.05(±0.01) 0.904 0.011(±0.002) 0.004
    2%-Zn(IM)/Z5 9664.4 Zn-O 5.1(±0.7) 2.05(±0.01) 0.904 0.009(±0.003) 0.005
    3%-Zn(IM)/Z5 9663.4 Zn-O 4.7(±0.7) 2.02(±0.02) 0.904 0.011(±0.003) 0.006
    4%-Zn(IM)/Z5 9663.1 Zn-O 4.6(±0.4) 2.00(±0.01) 0.904 0.010(±0.002) 0.006
    a: CN = coordination number, R =Interatomic distances, σ= Debye-Waller factor, and R-factor=∑i(datai−fiti)2/(datai)2.
    下载: 导出CSV
  • [1] BARADARAN S, SOHRABI M, BIJANI P, et al. Isobutane aromatization in the presence of propane as a co-reactant over H-ZSM-5 catalysts using different crystallization times[J]. J Ind Eng Chem,2015,27(1):354−361.
    [2] NIU X, GAO J, WANG K, et al. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [3] PIDKO E A, HENSEN E J M, VAN SANTEN R A. Anionic oligomerization of ethylene over Ga/ZSM-5 Zeolite: A theoretical study[J]. J Phys Chem C,2008,112(49):19604−19611. doi: 10.1021/jp8069767
    [4] PINILLA-HERRERO I, BORFECCHIA E, CORDERO-LANZAC T, et al. Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts[J]. J Catal,2021,394:416−428. doi: 10.1016/j.jcat.2020.10.024
    [5] YUAN Y, LOBO R F. Zinc speciation and propane dehydrogenation in Zn/H-ZSM-5 catalysts[J]. ACS Catal,2023,13(7):4971−4984. doi: 10.1021/acscatal.2c05898
    [6] QIU B, ZHANG Y, ZHANG Y. A stable zinc zeolite catalyst for dehydrogenation of ethane to aromatics and ethylene[J]. Catal Lett,2022,152(5):1372−1385. doi: 10.1007/s10562-021-03726-1
    [7] NIU X, GAO J, MIAO Q, et al. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [8] GAO D, ZHI Y B, CAO L Y, et al. Influence of Zn state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. Chin J Chem Eng,2022,43:124−134. doi: 10.1016/j.cjche.2022.01.005
    [9] TRIWAHYONO S, JALIL A A, MUKTI R R, et al. Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane[J]. Appl Catal A: Gen,2011,407:91−99. doi: 10.1016/j.apcata.2011.08.027
    [10] KOLYAGIN Y G, ORDOMSKY V V, KHIMYAK Y Z, et al. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques[J]. J Catal,2006,238:122−133. doi: 10.1016/j.jcat.2005.11.037
    [11] 位春蕾, 高洁, 王凯, 等. 氢预处理对Zn/HZSM-5分子筛催化乙烯芳构化反应性能的影响[J]. 物理化学学报,2017,33(7):1483−1491. doi: 10.3866/PKU.WHXB201704133

    WEI Chun-lei, GAO Jie, WANG Kai, et al. Effect of hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta phys-Chim Sin,2017,33(7):1483−1491 doi: 10.3866/PKU.WHXB201704133
    [12] LYTLE F W. Applications of Synchrotron Radiation[M]. New York: GordonBreach, 1989: 135−223.
    [13] HOFFMANN M M, DARAB J G, HEALD S M, et al. New experimental developments for in situ XAFS studies of chemical reactions under hydrothermal conditions[J]. Chem geol,2000,167:89−103. doi: 10.1016/S0009-2541(99)00202-8
    [14] TAKEKOH R, OKUBO M, ARAKI T, et al. Quantitative chemical mapping of nanostructured “Onionlike” poly(methyl methacrylate)/polystyrene composite particles by soft X-ray microscopy[J]. Macromolecules,2005,38:542−551. doi: 10.1021/ma048609y
    [15] GENG R, LIU Y, GUO Y, et al. Structure evolution of Zn species on fresh, deactivated and regenerated Zn/ZSM-5 catalysts in ethylene aromatization[J]. ACS Catal,2022,12:14735−14747. doi: 10.1021/acscatal.2c04074
    [16] GENG R, LIU Y, GAO J, et al. The migration of Zn species on Zn/ZSM-5 catalyst during the process of ethylene aromatization[J]. Catal Sci Technol,2022,12:4201−4210. doi: 10.1039/D2CY00661H
    [17] 刘亚聪, 董 梅, 樊卫斌, 等. 用于乙烯芳构化反应的 Zn /HZSM-5 催化剂失活机制研究[J]. 燃料化学学报,2018,46(7):826−834.

    LIU Yacong, DONG Mei, FAN Weibin, et al. The deactivation mechanism of Zn /HZSM-5 zeolites in ethylene aromatization reaction[J]. J Fuel Chem Technol,2018,46(7):826−834
    [18] CHEN X, DONG M, NIU X, et al. Influence of Zn species in HZSM-5 on ethylene aromatization[J]. Chin J Catal,2015,36(6):880−888. doi: 10.1016/S1872-2067(14)60289-8
    [19] MADEIRA F, BEN T, PINARD L, et al. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A: Gen,2012,443:171−180.
    [20] BI Y, WANG Y, CHEN X, YU Z, et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chin J Catal,2014,35:1740−1751. doi: 10.1016/S1872-2067(14)60145-5
    [21] SMIEŠKOVÁ A, ROJASOVÁ E, HUDEC P, et al. Aromatization of light alkanes over ZSM-5 catalysts: Influence of the particle properties of the zeolite[J]. Appl Catal A: Gen,2004,268:235−240. doi: 10.1016/j.apcata.2004.03.043
    [22] MADEIRA F F, TAYEB K B, PINARD L, et al. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A: Gen, 2012, 443–444 : 171−180.
    [23] PAN T, WU Z, ZHOU K. In situ incorporation of Zn into hierarchical ZSM-5 zeolites for olefin hydroisomerization[J]. Ind Eng Chem Res,2020,59:12371−12380. doi: 10.1021/acs.iecr.0c01506
    [24] SHEN X, KANG J, NIU W, et al. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics[J]. Catal Sci Technol,2017,7:3598−3612. doi: 10.1039/C7CY01041A
    [25] KIM Y, LEE K, LEE J. The effect of pre-coking and regeneration on the activity and stability of Zn/ZSM-5 in aromatization of 2-methyl-2-butene[J]. Catal Today,2011,178:72−78. doi: 10.1016/j.cattod.2011.07.002
    [26] ZHENG H, MA D, BAO X, et al. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field Mo-95 NMR spectroscopy[J]. J Am Chem Soc,2008,130:3722−3723. doi: 10.1021/ja7110916
    [27] LUO Y J, MIAO C X, YUE Y H, et al. ZnO supported on silicalite-1 as an efficient catalyst for isobutane dehydrogenation to isobutene assisted by CO2[J]. Microporous Mesoporous Mater,2019,294:109864.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  31
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-01-19
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回