留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铁锰的有机凝胶原位还原和碳化及其费托合成反应性能

李长霄 李杰 路七超 刘建超 刘雷 董晋湘

李长霄, 李杰, 路七超, 刘建超, 刘雷, 董晋湘. 含铁锰的有机凝胶原位还原和碳化及其费托合成反应性能[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024015
引用本文: 李长霄, 李杰, 路七超, 刘建超, 刘雷, 董晋湘. 含铁锰的有机凝胶原位还原和碳化及其费托合成反应性能[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024015
LI Changxiao, LI Jie, LU Qichao, LIU Jianchao, LIU Lei, DONG Jinxiang. In situ reduction and carbonation of organogel containing Fe and Mn and their catalytic performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024015
Citation: LI Changxiao, LI Jie, LU Qichao, LIU Jianchao, LIU Lei, DONG Jinxiang. In situ reduction and carbonation of organogel containing Fe and Mn and their catalytic performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024015

含铁锰的有机凝胶原位还原和碳化及其费托合成反应性能

doi: 10.19906/j.cnki.JFCT.2024015
基金项目: 国家自然科学基金(U1910202)和山西省重点研发计划(202102090301005)资助
详细信息
    通讯作者:

    E-mail: liulei@tyut.edu.cn

  • 中图分类号: O643.3

In situ reduction and carbonation of organogel containing Fe and Mn and their catalytic performance in Fischer-Tropsch synthesis

Funds: The project was supported by National Natural Science Foundation of China(U1910202)and the Key Research and Development Project of Shanxi Province(202102090301005).
  • 摘要: 本研究制备了系列含Fe、Mn的有机凝胶前驱体,在氩气氛围下通过高温热处理,凝胶中铁物种被有机物原位分解进行还原和碳化,制备出了θ-Fe3C含量不同的费托合成催化剂。采用XRD、N2吸附-脱附、Raman、CO-TPD、CO2-TPD、XPS和TEM等手段对催化剂的结构组成、表面性质以及活性物种的电子价态进行了系统的表征和分析。实验结果表明,热处理后获得的催化剂含石墨碳、θ-Fe3C、Fe0和(FeO)0.497(MnO)0.503物相,费托反应后催化剂的结构保持稳定,物相种类不发生变化。考察了反应条件对催化性能的影响,FeMn10催化剂具有较优的催化性能,CO转化率为57.3%,低碳烯烃(C2−C4)选择性为37.1%,其中,θ-Fe3C物相作为催化活性位点,催化剂的活性和低碳烯烃的选择性与θ-Fe3C的含量具有正相关性。
  • 图  1  反应前FeMn催化剂的XRD谱图

    Figure  1  XRD patterns of the FeMn catalysts before reaction

    图  2  FeMn催化剂的N2吸附-脱附等温线

    Figure  2  N2 adsorption-desorption isotherms of the FeMn catalysts

    图  3  FeMn催化剂的CO-TPD谱图

    Figure  3  CO-TPD spectra of the FeMn catalysts

    图  4  FeMn催化剂的CO2-TPD谱图

    Figure  4  CO2-TPD spectra of the FeMn catalysts

    图  5  FeMn催化剂的Fe 2p XPS谱图

    Figure  5  Fe 2p XPS spectra of the FeMn catalysts

    图  6  FeMn催化剂的Raman谱图

    Figure  6  Raman spectra of the FeMn catalysts

    图  7  FeMn催化剂的TEM照片((a)、(b): FeMn20; (c)、(d): FeMn10; (e)、(f): FeMn4; (g)、(h): FeMn2)

    Figure  7  TEM images of the FeMn catalysts ((a), (b): FeMn20; (c), (d): FeMn10; (e), (f): FeMn4; (g), (h): FeMn2)

    图  8  反应后FeMn催化剂的XRD谱图

    Figure  8  XRD patterns of the FeMn catalysts after reaction

    图  9  CO转化率随FeMn催化剂中θ-Fe3C含量的变化

    Figure  9  Relationship between CO conversion with content of θ-Fe3C in the FeMn catalysts

    图  10  反应后FeMn10催化剂的TEM照片

    Figure  10  TEM images of the FeMn10 catalysts after reaction

    图  11  反应条件对FeMn10催化剂催化性能的影响

    Figure  11  Effect of reaction conditions on the catalytic performance of the FeMn10 catalysts

    表  1  FeMn催化剂的物理化学性质

    Table  1  Physico-chemical properties of the FeMn catalysts

    Sample SBET/(m2·g−1) Pore volume/(cm3·g−1) Pore size/nm n(Fe)n(Mn)*
    FeMn0 46.8 0.17 14.7
    FeMn20 26.4 0.10 15.2 15.0
    FeMn10 25.6 0.10 17.1 7.8
    FeMn4 32.1 0.13 16.1 3.4
    FeMn2 35.3 0.15 15.8 1.9
    *: Results were obtained by ICP-OES.
    下载: 导出CSV

    表  2  FeMn催化剂的CO2脱附量

    Table  2  CO2 desorption amount of the FeMn catalysts

    Sample CO2 desorption amount /(μmol·g−1)
    t < 200 ℃ t > 200 ℃
    FeMn0 49.0 20.0
    FeMn20 62.0 31.4
    FeMn10 71.4 45.1
    FeMn4 88.0 32.0
    FeMn2 71.8 17.5
    下载: 导出CSV

    表  3  不同Mn含量的催化剂催化性能

    Table  3  Catalytic performance of catalysts with different Mn contents

    Sample CO conv./
    %
    CO2 sel./
    %
    Selectivity/% O/P
    CH4 C2 =−C4 = C2 0−C4 0 C5+
    FeMn0 91.4 28.6 33.0 16.0 33.2 17.8 0.48
    FeMn20 22.0 12.2 29.9 27.5 27.1 15.5 1.02
    FeMn10 57.3 26.4 22.0 37.1 13.5 27.4 2.75
    FeMn4 34.3 19.6 29.5 30.2 27.9 12.4 1.08
    FeMn2 10.7 11.1 33.1 24.1 32.9 9.9 0.73
    Reaction conditions:H2/CO = 2,GHSV = 24000 mL/(h·g),t = 300 ℃,p = 2 MPa,TOS = 20 h;O/P = C2 =−C4 =/C2 0−C4 0.
    下载: 导出CSV
  • [1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal,2013,3(9):2130−2149. doi: 10.1021/cs4003436
    [2] 王佳, 高秀娟, 宋法恩, 等. 低钼锡比催化剂中钼的价态对甲醇氧化制甲缩醛反应性能的影响[J]. 燃料化学学报(中英文),2024,52(1):38−46.

    WANG Jia, GAO Xiujuan, SONG Faen, et al. Effect of molybdenum valence in low Mo/Sn ratio catalysts for the oxidation of methanol to dimethoxymethane[J]. J Fuel Chem Technol,2024,52(1):38−46.
    [3] GAO X, ZHANG J, CHEN N, et al. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chin J Catal,2016,37(4):510−516. doi: 10.1016/S1872-2067(15)61051-8
    [4] 刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报(中英文),2023,51(1):34−51.

    LIU Saisai, YAO Jingang, CHEN Guanyi, et al. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. J Fuel Chem Technol,2023,51(1):34−51.
    [5] CHEN X, DENG D, PAN X, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chin J Catal,2015,36(9):1631−1637. doi: 10.1016/S1872-2067(15)60882-8
    [6] LI Z, ZHONG L, YU F, et al. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catal,2017,7(5):3622−3631. doi: 10.1021/acscatal.6b03478
    [7] MENG G, SUN J, TAO L, et al. Ru1Con single-atom alloy for enhancing Fischer-Tropsch synthesis[J]. ACS Catal,2021,11(3):1886−1896. doi: 10.1021/acscatal.0c04162
    [8] 陈治平, 张智, 周文武, 等. 碳化铁的制备及其在费托合成中的应用研究进展[J]. 燃料化学学报,2022,50(11):1381−1392.

    CHEN Zhiping, ZHANG Zhi, ZHOU Wenwu, et al. Preparation of iron carbide and its application in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2022,50(11):1381−1392.
    [9] DE S E, BEALE A M, NIKITENKO S, et al. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. J Catal,2009,262(2):244−256. doi: 10.1016/j.jcat.2008.12.021
    [10] DING M, YANG Y, WU B, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy,2015,160:982−989. doi: 10.1016/j.apenergy.2014.12.042
    [11] MA C, ZHANG W, CHANG Q, et al. θ-Fe3C dominated Fe@C core–shell catalysts for Fischer-Tropsch synthesis: Roles of θ-Fe3C and carbon shell[J]. J Catal,2021,393:238−246. doi: 10.1016/j.jcat.2020.11.033
    [12] ZHANG W, MA C, LIU X, et al. Single-phase θ-Fe3C derived from prussian blue and its catalytic application in FIscher-Tropsch synthesis[J]. Catalysts,2022,12(10):1140. doi: 10.3390/catal12101140
    [13] LIU Y, CHEN J, BAO J, et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal,2015,5(6):3905−3909. doi: 10.1021/acscatal.5b00492
    [14] YANG Z, ZHANG Z, LIU Y, et al. Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: Effects of Mn promotion[J]. Appl Catal B: Environ,2021,285:119815. doi: 10.1016/j.apcatb.2020.119815
    [15] 张建利, 王旭, 马丽萍, 等. MgFeMn-HTLcs的制备、改性及其CO加氢性能[J]. 化工学报,2018,69(5):2073−2080.

    ZHANG Jianli, WANG Xu, MA Liping, et al. Preparation of modified MgFeMn-HTLcs and catalytic performance in CO hydrogenation[J]. CIESC J,2018,69(5):2073−2080.
    [16] SHI B, ZHANG Z, LIU Y, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. J Catal,2020,381:150−162. doi: 10.1016/j.jcat.2019.10.034
    [17] 张庆玲, 郭荷芹, 侯博, 等. Mn和Zr助剂对介孔碳负载钴基催化剂费托合成反应性能的影响[J]. 燃料化学学报,2017,45(6):682−688.

    ZHANG Qingling, GUO Heqin, HOU Bo, et al. Effects of Mn and Zr promoters on the performance of ordered mesoporous carbon supported Co catalyst in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2017,45(6):682−688.
    [18] 马丽萍, 张建利, 马清祥, 等. K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究[J]. 燃料化学学报,2016,44(4):449−456.

    MA Liping, ZHANG Jianli, MA Qingxiang, et al. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. J Fuel Chem Technol,2016,44(4):449−456.
    [19] 张建利, 王旭, 马丽萍, 等. 层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究[J]. 燃料化学学报,2017,45(12):1489−1498. doi: 10.1016/S1872-5813(17)30066-X

    ZHANG Jianli, WANG Xu, MA Liping, et al. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. J Fuel Chem Technol,2017,45(12):1489−1498. doi: 10.1016/S1872-5813(17)30066-X
    [20] 杨向平, 郭晓雪, 张成华, 等. 金属有机骨架材料Fe-MIL-100诱导的铁基费托催化剂的合成及催化性能研究[J]. 化学学报,2017,75(4):360−366. doi: 10.6023/A16100549

    YANG Xiangping, GUO Xiaoxue, ZHANG Chenghua, et al. Synthesis and catalytic properties of iron based Fischer-Tropsch catalyst mediated by MOFs Fe-MIL-100[J]. Acta Chim Sin,2017,75(4):360−366. doi: 10.6023/A16100549
    [21] 李宁, 马彩萍, 张成华, 等. MOFs衍生炭负载的钴基催化剂的廉价制备及其CO加氢催化性能[J]. 燃料化学学报,2019,47(4):428−437. doi: 10.1016/S1872-5813(19)30020-9

    LI Ning, MA Cai-ping, ZHANG Cheng-hua, et al. Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation[J]. J Fuel Chem Technol,2019,47(4):428−437. doi: 10.1016/S1872-5813(19)30020-9
    [22] SUN J, ZHENG S, CHEN J. Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks[J]. J Fuel Chem Technol,2023,51(9):1291−1297. doi: 10.1016/S1872-5813(23)60352-4
    [23] 赵云鹏, 赵薇, 司兴刚, 等. Co@C催化木质素衍生酚类化合物的加氢转化[J]. 燃料化学学报,2021,49(1):55−62.

    ZHAO Yunpeng, ZHAO Wei, SI Xinggang, et al. Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts[J]. J Fuel Chem Technol,2021,49(1):55−62.
    [24] WANG A, LUO M, LV B, et al. MOF-derived porous carbon-supported bimetallic Fischer-Tropsch synthesis catalysts[J]. Ind Eng Chem Res,2022,61(11):3941−3951. doi: 10.1021/acs.iecr.1c03810
    [25] AN B, CHENG K, WANG C, et al. Pyrolysis of metal–organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catal,2016,6(6):3610−3618. doi: 10.1021/acscatal.6b00464
    [26] WEZENDONK T A, SANTOS V P, NASALEVICH M A, et al. Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts[J]. ACS Catal,2016,6(6):3236−3247.
    [27] KODAMA T, OOKUBO M, MIURA S, et al. Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3-xO4 by coprecipitation[J]. Mater Res Bull,1996,31(12):1501−1512. doi: 10.1016/S0025-5408(96)00146-8
    [28] MUNIR S, AMIN M, IQBAL N, et al. Effect of Pyrolysis on iron-metal organic frameworks (MOFs) to Fe3C@ Fe5C2 for diesel production in Fischer-Tropsch synthesis[J]. Front Chem,2023,11:1150565. doi: 10.3389/fchem.2023.1150565
    [29] AL-DOSSARY M, FIERRO J, SPIVEY J. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res,2015,54(3):911−921. doi: 10.1021/ie504473a
    [30] WU X, MA H, ZHANG H, et al. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Ind Eng Chem Res,2019,58(47):21350−21362. doi: 10.1021/acs.iecr.9b04221
    [31] WAN H, WU B, LI T, et al. Effects of SiO2 and Al2O3 on performances of iron-basedcatalysts for slurry Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2007,35(5):589−594. doi: 10.1016/S1872-5813(07)60036-X
    [32] HAN Z, QIAN W, ZHANG H, et al. Effect of rare-earth promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res,2020,59(33):14598−14605. doi: 10.1021/acs.iecr.9b06760
    [33] LYU S, LIU C, WANG G, et al. Structural evolution of carbon in an Fe@C catalyst during the Fischer-Tropsch synthesis reaction[J]. Catal Sci Technol,2019,9(4):1013−1020. doi: 10.1039/C8CY02420K
    [34] SALAZAR-CONTRERAS H G, MARTINEZ-HERNANDEZ A, BOIX AA, et al. Effect of Mn on Co/HMS-Mn and Co/SiO2-Mn catalysts for the Fischer-Tropsch reaction[J]. Appl Catal B: Environ,2019,244:414−426. doi: 10.1016/j.apcatb.2018.11.067
    [35] LI T, WANG H, YANG Y, et al. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. J Energy Chem,2013,22(4):624−632. doi: 10.1016/S2095-4956(13)60082-0
    [36] ZHAO Q, HUANG S, HAN X, et al. Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis[J]. Carbon,2021,173:364−375. doi: 10.1016/j.carbon.2020.11.019
    [37] MALHI H S, SUN C, ZHANG Z, et al. Catalytic consequences of the decoration of sodium and zinc atoms during CO2 hydrogenation to olefins over iron-based catalyst[J]. Catal Today,2022,387:28−37. doi: 10.1016/j.cattod.2021.03.009
    [38] WEI C, TU W, JIA L, et al. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622. doi: 10.1016/j.apsusc.2020.146622
    [39] ZHANG J, ABBAS M, ZHAO W, et al. Enhanced stability of a fused iron catalyst under realistic Fischer-Tropsch synthesis conditions: insights into the role of iron phases (χ-Fe5C2, θ-Fe3C and α-Fe)[J]. Catal Sci Technol,2022,12(13):4217−4227. doi: 10.1039/D2CY00703G
    [40] HERRANZ T, ROJAS S, PEREZ-ALONSO F J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal,2006,243(1):199−211. doi: 10.1016/j.jcat.2006.07.012
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-02
  • 修回日期:  2024-03-27
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-04-16

目录

    /

    返回文章
    返回