留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双电离源飞行时间质谱用于峰峰煤原位热解挥发分的表征

刘方刚 靳立军 杨静 唐紫超 胡浩权

刘方刚, 靳立军, 杨静, 唐紫超, 胡浩权. 双电离源飞行时间质谱用于峰峰煤原位热解挥发分的表征[J]. 燃料化学学报.
引用本文: 刘方刚, 靳立军, 杨静, 唐紫超, 胡浩权. 双电离源飞行时间质谱用于峰峰煤原位热解挥发分的表征[J]. 燃料化学学报.
LIU Fang-gang, JIN Li-jun, YANG Jing, TANG Zi-chao, HU Hao-quan. In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer[J]. Journal of Fuel Chemistry and Technology.
Citation: LIU Fang-gang, JIN Li-jun, YANG Jing, TANG Zi-chao, HU Hao-quan. In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer[J]. Journal of Fuel Chemistry and Technology.

双电离源飞行时间质谱用于峰峰煤原位热解挥发分的表征

基金项目: 国家重点研发计划(2016 YFB0600301)资助
详细信息
    作者简介:

    刘方刚:(liufanggang@mail.dlut.edu.cn

    通讯作者:

    Tel:0592-2183368,E-mail:zctang@xmu.edu.cn

    Tel:0411-84986157,E-mail:hhu@dlut.edu.cn

  • 中图分类号: TQ536.1

In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600301)
  • 摘要: 利用自行搭建的原位热解-双电离源-飞行时间质谱(Py-EI/PI-TOFMS)对河北峰峰(FF)煤的热解行为,特别是含杂原子化合物的逸出特性进行研究。通过半定量分析获得产物的相对含量,通过对选定产物信号进行扫描获得其离子流强度随温度的变化曲线,同时利用电子轰击分析了H2O、CO、CO2、H2和CH4五种小分子气体产物的逸出规律。结果表明,该原位热解-飞行时间质谱系统很好地实现了煤热解过程中初级产物的原位检测与表征。对占检测到的挥发分约70%的质荷比小于240的热解产物的相对含量分布进行分析发现,烃类产物以1至3环芳烃为主;酚类化合物以含1至3个苯环的酚为主,其中,含3个苯环的酚类化合物含量明显高于含1至2个苯环的;含相同烷基取代基的酚类化合物的最大逸出温度随苯环数的增加向低温移动。热解挥发分中含氮/硫化合物的相对含量均小于1.0%,硫杂环化合物的含量高于吡咯/吡啶类化合物。
  • 图  1  原位热解-双电离源飞行时间质谱示意图

    Figure  1.  Schematic diagram of pyrolysis reactor coupled with double ionization sources and time-of-flight mass spectrometer

    Ⅰ: pyrolysis-ionization zone; Ⅱ: time-of-flight mass analyzer

    图  2  FF煤的TG/DTG曲线(a),热解产物电子轰击电离总离子流和光电离总离子流曲线(b)

    Figure  2.  TG/DTG (a), EI-TIC and PI-TIC curves (b) of FF coal upon pyrolysis

    图  3  FF煤热解的电子轰击电离质谱图(a)和主要挥发分随温度的变化(b)

    Figure  3.  EI mass spectrogram and evolution-curves of main volatiles as a function of temperature from FF coal pyrolysis

    图  4  FF煤热解产物的光电离质谱图

    Figure  4.  Photoionization mass spectrum from pyrolysis of FF coal

    图  5  FF煤热解产生的烃类化合物的相对含量

    Figure  5.  Relative contents of various hydrocarbon products during the pyrolysis of FF coal

    图  6  FF煤热解产生的含氧化合物的相对含量

    Figure  6.  Relative contents of O-containing compounds during pyrolysis of FF coal

    图  7  FF煤热解产生的含氮/硫化合物的相对含量

    Figure  7.  Relative contents of N/S-containing compounds during pyrolysis of FF coal

    图  8  FF煤的XPS N 1s谱图

    Figure  8.  N 1s XPS spectrum of FF coal

    图  9  FF煤热解产生的含氮化合物的逸出曲线

    Figure  9.  Evolution curves of N-containing compounds during pyrolysis of FF coal

    图  10  FF煤的XPS S 2p谱图

    Figure  10.  S 2p XPS spectrum of FF coal

    图  11  FF煤热解产生的含硫化合物的逸出曲线

    Figure  11.  Evolution curves of S-containing compounds during pyrolysis of FF coal

    表  1  峰峰煤的工业分析和元素分析

    Table  1.   Proximate and ultimate analyses of FF coal

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafFCdafCHNSO*
    0.0510.631.5468.4683.593.081.690.6910.95
    下载: 导出CSV

    表  2  FF煤初始热解产物的归属

    Table  2.   Mass assignment of primary pyrolysis products from FF coal

    m/zNameFormulaIE/eVm/zNameFormulaIE/eV
    28ethyleneC2H410.51128naphthaleneC10H88.14
    42propyleneC3H69.73142methylnaphthaleneC11H107.96
    56buteneC4H89.10156dimethylnaphthalene/Ethyl naphthaleneC12H128.11/7.95
    70penteneC5H109.04170C3 alkyl naphthaleneC13H14
    58butaneC4H1010.551301,2-dihydronaphthaleneC10H108.14
    72C5 alkanesC5H12132tetrahydronaphthaleneC10H128.46
    78benzeneC6H69.24178phenanthrene/anthraceneC14H107.44/7.899
    92tolueneC7H88.83192methyl phenanthrene/anthraceneC15H127.90/7.70
    106dimethyl benzene/Ethyl benzeneC8H108.44/8.77206C2 alkyl phenanthrene/anthraceneC16H147.53−8.01
    120C3 alkyl benzeneC9H12220C3 alkyl phenanthrene/anthraceneC17H16
    68furanC4H4O8.89144naphtholC10H8O7.89
    146coumarinC9H6O28.72158methyl naphtholC11H10O7.82
    118benzofuranC8H6O8.80172dimethyl naphthol/Ethyl naphtholC12H12O
    168dibenzofuranC12H8O8.09186C3 alkyl naphtholC13H14O
    94phenolC6H6O8.49160naphthalenediolC10H8O27.62
    108cresolC7H8O8.29174methyl naphthalenediolC11H12O2
    122dimethyl phenol/Ethyl phenolC8H10O188C2 alkyl naphthalenediolC12H14O2
    136C3 alkyl phenolC9H12O202C3 alkyl naphthalenediolC13H16O2
    110benzenediolC6H6O27.94194phenanthrenol/anthracenolC14H10O8.83
    124methyl benzenediolC7H8O2208methyl phenanthrenol/anthracenolC15H12O
    138dimethyl benzenediol/Ethyl benzenediolC8H10O2222C2 alkyl phenanthrenol/anthracenolC16H14O
    152C3 alkyl benzenediolC9H12O2236C3 alkyl phenanthrenol/anthracenolC17H16O
    1454-hydroxy-quinolineC9H7NO8.201592-hydroxy-7-methyl-quinolineC10H9NO
    67pyrroleC4H5N8.2180pyrimidineC4H4N28.71
    81methyl pyrroleC5H7N8.01129quinolineC9H7N8.30
    95C2 alkyl pyrroleC6H9N143methyl quinolineC10H9N
    109C3 alkyl pyrroleC7H11N157dimethyl quinoline/Ethyl quinolineC11H11N
    79pyridineC5H5N9.25171C3 alkyl quinolineC12H13N
    93methyl pyridineC6H7N9.02179benzoquinolineC13H9N7.80
    107dimethyl pyridine/Ethyl pyridineC7H9N8.85/167carbazoleC12H9N7.57
    121C3 alkyl pyridineC8H11N213benzocarbazoleC16H11N7.10
    117indoleC8H7N7.76134thianaphtheneC8H6S8.13
    153naphthalene nitrileC11H7N8.64148methyl thianaphtheneC9H8S
    84thiopheneC4H4S8.86162dimethyl thianaphtheneC10H10S
    98methyl thiopheneC5H6S8.59184dibenzothiopheneC12H8S8.34
    112dimethyl thiopheneC6H8S8.23198methyl dibenzothiopheneC13H10S
    212dimethyl dibenzothiopheneC14H12S8.77
    下载: 导出CSV

    表  3  酚类化合物的最大逸出峰温度

    Table  3.   Peak temperatures with maximum evolution of phenols during the pyrolysis of FF coal

    Mono-
    phenol
    PhenolNaphtholPhenanthrenol/
    anthracenol
    C0C1C2C3C0C1C2C3C0C1C2C3
    tMax/℃466501475469452461466467450458461459
    Bis-
    phenols
    BenzenediolNaphthalenediol
    C0C1C2C0C1C2
    tMax/℃458462457450448456
    下载: 导出CSV

    表  4  不同芳醚ArO-CH3键的解离能 (kcal/mol)

    Table  4.   Bond dissociation energies (BDEs) of ArO–CH3 bonds in different aromatic ethers (kcal/mol)

    StructureB3LYPStructureB3LYPStructureB3LYPStructureB3LYP
    54.5954.8949.2649.22
    53.9253.6447.1147.09
    50.1450.5143.9043.89
    下载: 导出CSV
  • [1] STOCK L M. Coal pyrolysis[J]. Acc Chem Res,1989,22:427−433. doi: 10.1021/ar00168a004
    [2] MORGAN T J, KANDIYOTI R. Pyrolysis of coals and biomass: Analysis of thermal breakdown and its products[J]. Chem Rev,2014,114:1547−1607. doi: 10.1021/cr400194p
    [3] KONG J, ZHAO R F, BAI Y H, LI G L, ZHANG C, LI F. Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS[J]. Fuel Process Technol,2014,127:41−46. doi: 10.1016/j.fuproc.2014.06.004
    [4] MAHAT R K, RODGERS W, BASILE F. Microwave radiation heating in pressurized vessels for the rapid extraction of coal samples for broad spectrum GC-MS analysis[J]. Energy Fuels,2014,28:6326−6335. doi: 10.1021/ef501659h
    [5] LIEVENS C, CI D H, BAI Y, MA L G, ZHANG R, CHEN J Y, GAI Q Q, LONG Y H, GUO X F. A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS[J]. Fuel Process Technol,2013,116:85−93. doi: 10.1016/j.fuproc.2013.04.026
    [6] ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. J Anal Appl Pyrol,1999,50:31−46. doi: 10.1016/S0165-2370(99)00024-8
    [7] MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62:119−135. doi: 10.1016/S0378-3820(99)00123-X
    [8] NOLA G D, DEJONG W, H S. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen[J]. Fuel Process Technol,2010,91:103−115. doi: 10.1016/j.fuproc.2009.09.001
    [9] POUTSMA M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J]. Energy Fuels,1990,4:113−131. doi: 10.1021/ef00020a001
    [10] MüHLBERGER F, STREIBEL T, WIESER J, ULRICH A, ZIMMERMANN R. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath[J]. Anal Chem,2005,77:7408−7414. doi: 10.1021/ac051194+
    [11] MAMYRIN B A. Time-of-flight mass spectrometry[J]. Int J Mass Spectrom,2001,206:251−266. doi: 10.1016/S1387-3806(00)00392-4
    [12] XU J Y, ZHUO J K, ZHU Y N, PAN Y, YAO Q. Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry[J]. Energy Fuels,2016,31:730−737.
    [13] SHI L, WANG X L, ZHANG S Y, WU X H, YUAN L, TANG Z C. A new in-situ pyrolytic time-of-flight mass spectrometer instrument for study on coal pyrolysis[J]. J Anal Appl Pyrolysis,2016,117:347−353. doi: 10.1016/j.jaap.2015.10.009
    [14] LI G S, FAN X, YOU C Y, ZHAO Y P, WANG R Y, WEI X Y, MA F Y, LU X, MO W L, LI X. Molecular characteristics of the soluble components from three low-rank coals based on the analyses using GC/MS and GC/Q-TOF MS[J]. Fuel,2019,254:115602.
    [15] WANG F, FAN X, XIA J L, WEI X Y, YU Y R, ZHAO Y P, CAO J P, ZHAO W, WANG R Y. Insight into the structural features of low-rank coals using comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry[J]. Fuel,2018,212:293−301. doi: 10.1016/j.fuel.2017.10.044
    [16] CZECH H, SIPPULA O, KORTELAINEN M, TISSARI J, RADISCHAT C, PASSIG J, STREIBEL T, JOKINIEMI J, ZIMMERMANN R. On-line analysis of organic emissions from residential wood combustion with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS)[J]. Fuel,2016,177:334−342. doi: 10.1016/j.fuel.2016.03.036
    [17] ZHOU Z Y, LIU C J, CHEN X M, MA H, ZHOU C Q, WANG Y Z, QI F. On-line photoionization mass spectrometric study of lignin and lignite co-pyrolysis: Insight into the synergetic effect[J]. J Anal Appl Pyrolysis,2019,137:285−292. doi: 10.1016/j.jaap.2018.12.009
    [18] LI G, LI L, JIN L J, TANG Z C, FAN H J, HU H Q. Experimental and theoretical investigation on three α,ω-diarylalkane pyrolysis[J]. Energy Fuels,2014,28:6905−6910. doi: 10.1021/ef502012b
    [19] ZHOU Y, LI L, JIN L.J, ZHOU J, SHI Z W, LI Y, HU H Q. Pyrolytic behavior of coal-related model compounds connected with C–C bridged linkages by in-situ pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel,2019,241:533−541. doi: 10.1016/j.fuel.2018.12.046
    [20] JAKAB E, TILL F, VARHEGYI G. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals[J]. Fuel Process Technol,1991,28:221−238.
    [21] CAMPBELL J H. Pyrolysis of subbituminous coal in relation to in-situ gasification[J]. Fuel,1978,57:217−224. doi: 10.1016/0016-2361(78)90119-9
    [22] HEEK K H V, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel,1994,73:886−896. doi: 10.1016/0016-2361(94)90283-6
    [23] CHARPENAY S, SERIO M A, BASSILAKIS R, SOLOMON P R. Influence of maturation on the pyrolysis products from coals and kerogens. 1. Experiment[J]. Energy Fuels,1996,10:19−25. doi: 10.1021/ef950149+
    [24] SOLOMON P R, HAMBLEN D G, SERIO M A, YU Z Z, CHARPENAY S. A characterization method and model for predicting coal conversion behaviour[J]. Fuel,1993,72:469−488. doi: 10.1016/0016-2361(93)90106-C
    [25] IBARRA J V, MOLINER R, GAVILȦN M P. Functional group dependence of cross-linking reactions during pyrolysis of coal[J]. Fuel,1991,70:408−413. doi: 10.1016/0016-2361(91)90131-S
    [26] CHENG J, ZHANG Y S, WANG T, NORRIS P, CHEN W Y, PAN W P. Thermogravimetric–Fourier transform infrared spectroscopy-gas chromatography/mass spectrometry study of volatile organic compounds from coal pyrolysis[J]. Energy Fuels,2017,31:7042−7051. doi: 10.1021/acs.energyfuels.7b01073
    [27] HE Q Q, WAN K J, HOADLEY A, YEASMIN H, MIAO Z Y. TG-GC-MS study of volatile products from Shengli lignite pyrolysis[J]. Fuel,2015,156:121−128. doi: 10.1016/j.fuel.2015.04.043
    [28] WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21. doi: 10.1016/j.fuel.2010.06.041
    [29] AFEEFY H Y, LIEBMAN J F, STEIN S E. Neutral Thermochemical Data, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899,
    [30] LI G, ZHANG S Y, JIN L J, TANG Z C, HU H Q. In-situ analysis of volatile products from lignite pyrolysis with pyrolysis-vacuum ultraviolet photoionization and electron impact mass spectrometry[J]. Fuel Process Technol,2015,133:232−236. doi: 10.1016/j.fuproc.2015.02.016
    [31] ZHOU Y, LI L, JIN L J, ZHU J L, LI J G, LI Y, FAN H J, HU H Q. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Fuel,2020,260:116322.
    [32] SUN Q L, LI W, CHEN H K, LI B Q. The variation of structural characteristics of macerals during pyrolysis[J]. Fuel,2003,82:669−676. doi: 10.1016/S0016-2361(02)00356-3
    [33] 孙庆雷, 李文, 李东涛, 陈皓侃, 李保庆, 白向飞, 李文华. 神木煤有机显微组分的结构特征与热转化性质的关系[J]. 燃料化学学报,2003,31(2):97−102. doi: 10.3969/j.issn.0253-2409.2003.02.001

    SUN Qing-lei, LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing, BAI Xiang-fei, LI Wen-hua. Relationship between structure characteristics and thermal conversion property of Shenmu maceral concentrates[J]. J Fuel Chem Technol,2003,31(2):97−102. doi: 10.3969/j.issn.0253-2409.2003.02.001
    [34] DONG J, LI F, XIE K C. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS[J]. J Hazard Mater,2012,243:80−85. doi: 10.1016/j.jhazmat.2012.09.073
    [35] ATTAR A, HENDRICKSON G G. 5-functional-groups-and-heteroatoms-in-coal[J]. Coal Struct,1982,131−198.
    [36] BLAZSÓ M, JAKAB E. Study of thermal decomposition reactions in coals by pyrolysis-gas chromatography-mass spectrometry[J]. J Anal Appl Pyrolysis,1985,8:189−194.
    [37] YAN L J, BAI Y.H, ZHAO R F, LI F, XIE K C. Correlation between coal structure and release of the two organic compounds during pyrolysis[J]. Fuel,2015,145:12−17. doi: 10.1016/j.fuel.2014.12.056
    [38] BUCKLEY A N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy[J]. Fuel Process Technol,1994,38:165−179. doi: 10.1016/0378-3820(94)90046-9
    [39] BARTLE K D, PERRY D L, WALLACE S. The functionality of nitrogen in coal and derived liquids: An XPS study[J]. Fuel Process Technol,1987,15:350−361.
    [40] SOLOMON P R, COLKET M B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel,1978,57:749−755. doi: 10.1016/0016-2361(78)90133-3
    [41] KELEMEN S R, GORBATY M L, KWIATEK P J, FLETCHER T H, WATT M, SOLUM M S, PUGMIRE R J. Nitrogen Transformations in Coal during Pyrolysis[J]. Energy Fuels,1998,12:159−173. doi: 10.1021/ef9701246
    [42] 陈鹏. 用XPS研究兖州煤各显微组分中有机硫存在形态[J]. 燃料化学学报,1997,25(3):238−241.

    CHEN Peng. Application of XPS in study dormation of organic sulfur in macerals of Yanzhou coal[J]. J Fuel Chem Technol,1997,25(3):238−241.
    [43] 李梅, 杨俊和, 张启锋, 常海洲, 孙慧. 用 XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律, 燃料化学学报, 2013, 41(11): 1287−1293.

    LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N- and S- functional groups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013, 41(11): 1287−1293.
    [44] ZHAO Y P, HU H Q, JIN L J, HE X F, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG–MS and in a fixed bed reactor[J]. Fuel Process Technol,2011,92:780−786. doi: 10.1016/j.fuproc.2010.09.005
    [45] XING M W, KONG J, DONG J, JIAO H L, LI F. Thiophenic sulfur compounds released during coal pyrolysis[J]. Environ Eng Sci,2013,30:273−279. doi: 10.1089/ees.2011.0540
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-02-08
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回