留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响

杨淑倩 贺建平 张娜 隋晓伟 张磊 杨占旭

杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报(中英文), 2018, 46(2): 179-188.
引用本文: 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报(中英文), 2018, 46(2): 179-188.
YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 179-188.
Citation: YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 179-188.

稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响

基金项目: 

国家自然科学基金 21671092

国家自然科学基金 21376237

辽宁省博士科研启动基金 2016013022

详细信息
  • 中图分类号: O643

Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming

Funds: 

the National Natural Science Foundation of China 21671092

the National Natural Science Foundation of China 21376237

the Doctoral Scientific Research Foundation of Liaoning Province 2016013022

More Information
  • 摘要: 采用原位合成法在γ-Al2O3表面合成了锌铝水滑石,再通过顺次浸渍法制备了一系列掺杂稀土改性的MM=Y、La、Ce、Sm、Gd)/Cu/ZnAl催化材料,并将其应用于甲醇水蒸气重整制氢反应。探讨了稀土掺杂改性对Cu/ZnAl催化剂催化性能的影响,并采用XRD、SEM-EDS、BET、H2-TPR、XPS和N2O滴定等手段对催化剂进行了表征。结果表明,催化剂的活性与Cu比表面积和催化剂的还原性质密切相关,Cu比表面积越大,还原温度越低,催化活性越高。稀土Ce、Sm、Gd的引入能改善活性组分Cu的分散度、Cu比表面积以及催化剂的还原性质,进而提高催化剂的催化活性。其中,Ce/Cu/ZnAl催化剂表现出最佳的催化活性,在反应温度为250 ℃时,甲醇转化率达到100%,CO含量为0.39%,相比Cu/ZnAl催化剂,甲醇转化率提高了近40%。
  • 图  1  γ-Al2O3和ZnAl-LDHs/γ-Al2O3的XRD谱图

    Figure  1  XRD patterns of γ-Al2O3 and ZnAl-LDHs/γ-Al2O3

    a: γ-Al2O3; b: ZnAl-LDHs/γ-Al2O3

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of various catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  3  γ-Al2O3 和ZnAl-LDHs/γ-Al2O3的SEM照片

    Figure  3  SEM images of γ-Al2O3 (a) and ZnAl-LDHs/γ-Al2O3 (b)

    图  4  掺杂不同稀土助剂催化剂的SEM-EDS照片

    Figure  4  SEM-EDS images of various catalysts

    (a): Y/Cu/ZnAl; (b): La/Cu/ZnAl; (c): Ce/Cu/ZnAl; (d): Sm/Cu/ZnAl; (e): Gd/Cu/ZnAl

    图  5  催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of various catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  6  催化剂的Cu 2p XPS谱图

    Figure  6  Cu 2p XPS spectra of the catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  7  催化剂的Cu俄歇谱图

    Figure  7  Cu Auger spectra of the catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  8  催化剂的Zn 2p的XPS谱图

    Figure  8  Zn 2p XPS spectra of various catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  9  催化剂的Al 2p的XPS谱图

    Figure  9  Al 2p XPS spectra of various catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  10  催化剂O 1s的XPS谱图

    Figure  10  O 1s XPS spectra of various catalysts

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl

    图  11  反应温度对催化剂性能的影响

    Figure  11  Activities of various catalysts as a function of the reaction temperature for the methanol steam reforming at a water/methanol molar ratio of 1.2 and GHSV of 800 h-1

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl; g: equil

    图  12  反应温度对催化剂CO浓度的影响

    Figure  12  CO molar concentrations in the gaseous products as a function of the reaction temperature for the methanol steam reforming at a water/methanol molar ratio of 1.2 and GHSV of 800 h-1

    a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl; g: equil

    表  1  催化剂的物化性质及其催化甲醇水蒸气重整反应中氢气产率

    Table  1  Textural properties of the M/Cn/ZnAl catalysts modified with various rare earth elements and their hydrogen production rate in the methanol steam reforming

    Catalyst ABET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    CuO crystallite
    size d/nm
    Cu surface area
    A/(m2·g-1)
    Cu dispersion
    /%
    YcH2/
    (mL·kgcat-1·s-1)
    Cu/ZnAl 147.0 0.47 34 5.9 10.32 446.2
    Y/Cu/ZnAl 101.9 0.39 25 5.3 10.15 414.8
    La/Cu/ZnAl 105.5 0.37 24 5.3 10.05 424.4
    Ce/Cu/ZnAl 109.6 0.41 23 6.3 11.49 810.7
    Sm/Cu/ZnAl 106.0 0.37 25 6.1 11.53 568.5
    Gd/Cu/ZnAl 107.6 0.40 24 5.9 11.15 457.3
    note: the Cu surface area was measured by N2O chemisorption and Cu dispersion was determined as the ratio of the surface copper amount to the total copper content in the catalysts; The hydrogen production rate (YH2) was obtained by methanol steam reforming under atmospheric pressure, 240 ℃, water methanol molar ratio of 1.2 and GHSV of 800 h-1; no carrier gas was used
    下载: 导出CSV

    表  2  高斯拟合后还原峰位置

    Table  2  Positions of the reduction peak by a Gauss fit of the H2-TPR profiles

    Catalyst Peak position t/ ℃
    peak 1 peak 2 peak 3
    Cu/ZnAl 266 324 -
    Y/Cu/ZnAl 293 305 315
    La/Cu/ZnAl 279 297 309
    Ce/Cu/ZnAl 242 266 281
    Sm/Cu/ZnAl 266 297 -
    Gd/Cu/ZnAl 266 297 -
    下载: 导出CSV

    表  3  CO的选择性

    Table  3  Selectivity to CO over various catalysts

    Catalyst Methanol conversion
    x/%
    Selectivity to CO
    s/%
    Temperature
    t/ ℃
    Cu/ZnAl 79 1.6 260
    Y/Cu/ZnAl 76 1.1 260
    La/Cu/ZnAl 77 1.2 260
    Ce/Cu/ZnAl 92 0.9 240
    Sm/Cu/ZnAl 83 1.0 250
    Gd/Cu/ZnAl 81 0 260
    下载: 导出CSV
  • [1] JACOBSON M Z, COLELLA W G, GOLDEN D. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730):1901-1905. doi: 10.1126/science.1109157
    [2] FIHRI A, ARTERO V, RAZAVET M, BAFFERT C, LEIBL W, FONTECAVE M. Cobaloxime-based photocatalytic devices for hydrogen production[J]. Angew Chem Int Ed, 2008, 47(3):564-567.
    [3] KUC J, NEUMANN M, ARMBRUSTER M, YOON S, ZHANG Y, ERNI R, WEIDENKAFF A, MATAM S K. Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo1-x-yPdx ZnyOδ[J]. Catal Sci Technol, 2016, 6:1455-1468. doi: 10.1039/C5CY01410G
    [4] MA Y, GUAN G, PHANTHONG P, LI X, CAO J, HAO X, WANG Z, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014, 39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062
    [5] SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010, 99(1/2):43-57. https://www.sciencedirect.com/science/article/pii/S0926337310002584
    [6] 张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯.甲醇水蒸气重整制氢反应条件的优化[J].燃料化学学报, 2013, 41(1):116-122. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18110.shtml

    ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen[J]. J Fuel Chem Technol, 2013, 41(1):116-122. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18110.shtml
    [7] KIM W, MOHAIDEEN K K, SEO D J, YOON L Y. Methanol-steam reforming reaction over Cu-Al-based catalysts derived from layered double hydroxides[J]. Int J Hydrogen Energy, 2017, 42(4):2081-2087. doi: 10.1016/j.ijhydene.2016.11.014
    [8] ZHOU J J, ZHANG Y, WU G S, MAO D S, LU G Z. Influence of the component interaction over Cu/ZrO2 catalysts induced with fractionated precipitation method on the catalytic performance for methanol steam reforming[J]. RSC Adv, 2016, 6:30176-30183. doi: 10.1039/C5RA24163D
    [9] DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015, 40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130
    [10] LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEO A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094
    [11] HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol[J]. J Power Sources, 2015, 281:138-145. https://www.sciencedirect.com/science/article/pii/S0378775315001962
    [12] BUSCA G, COSTANTINO U, MARMOTTINI F, MONTANARI T, PATRONO P, PINZARI F, RAMIS G. Methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. Appl Catal A:Gen, 2006, 310:70-78. doi: 10.1016/j.apcata.2006.05.028
    [13] YAO C Z, WANG L C, LIU Y M, WU G S, CAO Y, DAI W L, FAN K N. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006, 297(2):151-158. doi: 10.1016/j.apcata.2005.09.002
    [14] PATEL S, PANT K K. Influence of preparation method on performance of Cu(Zn)(Zr) -alumina catalysts for the hydrogen production via steam reforming of methanol[J]. Porous Mater, 2006, 13(3):373-378. https://www.sciencedirect.com/science/article/pii/S0360319911004186
    [15] SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today, 2002, 77(1):89-98. https://www.sciencedirect.com/science/article/pii/S0920586102002353
    [16] HAMMOUD D, GENNEQUIN C, ABOUKAIS A, AAD E A. Steam reforming of methanol over x% Cu/Zn-Al 400500 based catalysts for production of hydrogen:Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy, 2015, 40(2):1283-1297. doi: 10.1016/j.ijhydene.2014.09.080
    [17] CAI Y C, LIU S W, XU X L, LI S B. team reforming of methanol over CuO-ZnO-La2O3-Al2O3 catalyst[J]. Mol Catal, 2002, 2(15):152-154.
    [18] PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. J Power Sources, 2006, 159(1):139-143. doi: 10.1016/j.jpowsour.2006.04.008
    [19] TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev Sci Eng, 1996, 38(4):439-520. doi: 10.1080/01614949608006464
    [20] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [21] XIE R F, FAN G L, YANG L, LI F. Solvent-free oxidation of ethylbenzene over hierarchical flower-like core-shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance[J]. Catal Sci Technol, 2015, 5(1):540-548. https://www.sciencedirect.com/science/article/pii/S1385894715016617
    [22] AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts:Transient deactivation kinetics modeling[J]. Appl Catal A:Gen, 2005, 279(1):155-164. http://www.doc88.com/p-4754410122489.html
    [23] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [24] ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, WANG A J, HU Y K, ZHAO S S. Effect of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol, 2013, 41(7):883-888. doi: 10.1016/S1872-5813(13)60038-9
    [25] HURST N W, GENTRY S J, JONES A, MCNICOL B D. Temperature programmed reduction[J]. Catal Rev Sci Eng, 1982, 24(2):233-309. doi: 10.1080/03602458208079654
    [26] SHIM J O, NA H S, JHA A, JANG W J, JEONG D W, NAH I W, JEON B H, ROH H S. Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions[J]. Chem Eng J, 2016, 306:908-915. doi: 10.1016/j.cej.2016.08.030
    [27] WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017, 422:932-943. doi: 10.1016/j.apsusc.2017.06.017
    [28] 张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫.前驱体和沉淀剂浓度对CuO/ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J].燃料化学学报, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [29] DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015, 40(33):10463-10479. https://www.sciencedirect.com/science/article/pii/S0360319916326787
    [30] 张国强, 郭天玉, 郑华艳, 李忠.焙烧温度对CuCe/Ac催化剂甲醇氧化羰基化性能的影响[J].燃料化学学报, 2016, 44(6):674-679. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18844.shtml

    ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/Ac catalysts for oxidative carbonylation of methanol[J]. J Fuel Chem Technol, 2016, 44(6):674-679. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18844.shtml
    [31] XIAO S, ZHANG Y F, GAO P, ZHONG L S, LI X P, ZHANG Z Z, WANG H, WEI W, SUN Y H. Highly efficient cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today, 2017, 281:327-336. doi: 10.1016/j.cattod.2016.02.004
    [32] LIU L J, YAO Z J, DENG Y, GAO F, LIU B, DONG L. Nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011, 3(6):978-989. https://www.sciencedirect.com/science/article/pii/S0926337309001039
    [33] LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015, 3(2):634-640. doi: 10.1039/C4TA05770H
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  206
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2017-12-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回