留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbCl2在缺陷Zigzag未燃尽碳的吸附机理

花桥建 吴国兴 徐卫 周晓韡 李冬 董瑞信

花桥建, 吴国兴, 徐卫, 周晓韡, 李冬, 董瑞信. PbCl2在缺陷Zigzag未燃尽碳的吸附机理[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022022
引用本文: 花桥建, 吴国兴, 徐卫, 周晓韡, 李冬, 董瑞信. PbCl2在缺陷Zigzag未燃尽碳的吸附机理[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022022
HUA Qiaojian, WU Guoxing, XU Wei, ZHOU Xiaowei, LI Dong, DONG Ruixin. Adsorption mechanism of PbCl2 on defect Zigzag unburned carbon[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022022
Citation: HUA Qiaojian, WU Guoxing, XU Wei, ZHOU Xiaowei, LI Dong, DONG Ruixin. Adsorption mechanism of PbCl2 on defect Zigzag unburned carbon[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022022

PbCl2在缺陷Zigzag未燃尽碳的吸附机理

doi: 10.19906/j.cnki.JFCT.2022022
基金项目: 锅炉吹灰优化项目(10049876BC190037)资助
详细信息
    通讯作者:

    Tel:18653156596,E-mail:957715624@qq.com

  • 中图分类号: TK16

Adsorption mechanism of PbCl2 on defect Zigzag unburned carbon

Funds: The project was supported by the Boiler Ash Blowing Optimization Project (10049876BC190037).
  • 摘要: 燃煤电厂排放的PbCl2毒性极强,且在全球的迁移和积累而受到广泛关注。未燃尽碳被认为是有效去除PbCl2的一种有前景的吸附剂。然而,现有的未燃尽碳模型不能反映实际未燃尽碳表面上的碳缺陷的结构。因此,建立缺陷未燃尽碳模型具有重要的现实意义。此外,碳模型对PbCl2的吸附研究还不够深入,反应机理也不清楚,这极大地阻碍了高效吸附剂的发展。为了揭示PbCl2在缺陷未燃尽碳表面上的吸附机理,利用密度泛函理论(DFT)系统地研究了PbCl2在不同缺陷未燃尽碳表面上的吸附过程,并分析了PbCl2在缺陷未燃烧碳表面上的吸附机理。结果表明,缺陷吸附位点是PbCl2吸附的最佳位点。
  • 图  1  Zigzag型缺陷未燃尽碳模型

    Figure  1  Zigzag type defect unburned carbon model

    图  2  (a) Zigzag型缺陷未燃尽碳模型ELF图, (b)Zigzag型缺陷未燃尽碳模型电子密度变形图

    Figure  2  (a) ELF diagram of Zigzag type defective unburned carbon model, (b) electron density deformation diagram of Zigzag type defective unburned carbon model

    图  3  (a) PbCl2在未燃尽碳模型表面的吸附构型, (b) PbCl2在未燃尽碳模型上的吸附能

    Figure  3  (a) Adsorption configuration of PbCl2 on the surface of unburned carbon model, (b) adsorption energy of PbCl2 on unburned carbon model

    图  4  PbCl2在缺陷未燃尽碳表面吸附构型的MBO值

    Figure  4  MBO value of the adsorption configuration of PbCl2 on the surface of unburned carbon with defects

    图  5  Mayer键级与吸附能之间的相关性分析

    Figure  5  Correlation analysis diagram between Mayer bond level and adsorption energy

    图  6  (a) Zig-D1-1-PbCl2构型ELF图, (b) Zig-D1-1-PbCl2构型电子密度差分图

    Figure  6  (a) Zig-D1-1-PbCl2 conformation ELF diagram, (b) Zig-D1-1-PbCl2 conformation electron density difference diagram

  • [1] BUNT J, WAANDERS F. Trace element behaviour in the Sasol-Lurgi MK IV FBDB gasifier. Part 1-the volatile elements: Hg, As, Se, Cd and Pb[J]. Fuel,2008,87(12):2374−2387. doi: 10.1016/j.fuel.2008.01.017
    [2] XU M. Status of trace element emission in a coal combustion process: A review[J]. Fuel Process Technol,2004,85(2/3):215−237. doi: 10.1016/S0378-3820(03)00174-7
    [3] YANG W, GAO Z, LIU X, DING X, YAN W. The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates[J]. Chem Eng J,2019,361:304−313. doi: 10.1016/j.cej.2018.12.087
    [4] 肖龙恒, 唐续龙, 卢光华, 张颖, 郭敏, 张梅. 重毒性铅污染土壤清洁高效修复研究进展[J]. 工程科学学报,2022,44(2):289−304.

    XIAO Long-heng, TANG Xu-long, LU Guang-hua, ZHANG Ying, GUO Min, ZHANG Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Chin J Eng,2022,44(2):289−304.
    [5] 丁宁. 煤炭中造成大气污染有害元素的分析[J]. 中国标准化,2018,(18):2.

    DING Ning. Analysis of harmful elements in coal causing atmospheric pollution[J]. China Standardization,2018,(18):2.
    [6] 邓双, 张凡, 刘宇, 石应杰, 王红梅, 张辰, 王相凤, 曹晴. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学,2013,33(7):1199−1206.

    DENG Shuang, ZHANG Fan, LIU Yu, SHI Ying-jie, WANG Hong-mei, ZHANG Chen, WANG Xiang-feng, CAO Qing. Migration transformation of lead from coal-fired power plants[J]. China Environ Sci,2013,33(7):1199−1206.
    [7] AL-ZBOON K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution[J]. J Hazard Mater,2011,188(1/3):414−421. doi: 10.1016/j.jhazmat.2011.01.133
    [8] MOHAN S, GANDHIMATHI R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J]. J Hazard Mater,2009,169(1/3):351−359. doi: 10.1016/j.jhazmat.2009.03.104
    [9] GUPTA G, TORRES N. Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent[J]. J Hazard Mater,1998,57(1/3):243−248. doi: 10.1016/S0304-3894(97)00093-9
    [10] CHO H, OH D, KIM K. A study on removal characteristics of heavy metals from aqueous solution by fly ash[J]. J Hazard Mater,2005,127(1/3):187−195. doi: 10.1016/j.jhazmat.2005.07.019
    [11] AHMARUZZAMAN M. Role of fly ash in the removal of organic pollutants from wastewater[J]. Energy Fuels,2009,23(3):1494−1511. doi: 10.1021/ef8002697
    [12] LAOHAPRAPANON S, MARQUES M, HOGLAND W. Removal of organic pollutants from wastewater using wood fly ash as a low-cost sorbent[J]. Clean: Soil, Air, Water,2010,38(11):1055−1061. doi: 10.1002/clen.201000105
    [13] SHEN F, LIU J, WU D, DONG Y, LIU F, HUANG H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater,2019,366:321−328. doi: 10.1016/j.jhazmat.2018.12.007
    [14] 高正阳, 刘晓硕, 李昂, 马传志, 李祥, 杨建蒙. 电厂烟气中SO2对活性炭吸附单质铅(Pb0)的影响机理[J]. 环境科学学报,2019,39(11):3732−3739.

    Gao Zheng-yang, Liu Xiao-shuo, Li Ang, Ma Chuan-zhi, Li Xiang, Yang Jian-meng. Mechanism of SO2 effect on adsorption of singlet lead (Pb0) by activated carbon in power plant flue gas[J]. J Environ Sci,2019,39(11):3732−3739.
    [15] ENOKI T, KOBAYASHI Y, FUKUI K-I. Electronic structures of graphene edges and nanographene[J]. Int Rev Phys Chem,2007,26(4):609−645. doi: 10.1080/01442350701611991
    [16] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry[J]. Carbon,1998,36(7/8):1061−1070. doi: 10.1016/S0008-6223(98)00078-5
    [17] 高正阳, 杨维结. 卤素改性活性炭氧化单质汞的机理研究[J]. 工程热物理学报,2017,38(2):381−385.

    GAO Zhen-yang, YANG Wei-jie. Mechanistic study on the oxidation of singlet mercury by halogen-modified activated carbon[J]. J Eng Thermophys-Rus,2017,38(2):381−385.
    [18] CHEN P, GU M, CHEN G, LIU F, LIN Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,254:115666.
    [19] GAO Z, LI M, SUN Y, YANG W. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface[J]. J Hazard Mater,2018,360:436−444. doi: 10.1016/j.jhazmat.2018.08.029
    [20] 余岳溪, 刘晓硕, 李昂, 廖永进, 兰万里. 氯改性活性炭吸附单质铅(Pb0)的机理[J]. 中国环境科学,2019,39(5):1847−1853.

    YU Yue-xi, LIU Xiao-shuo, LI Ang, LIAO Yong-jin, LAN Wan-li. Mechanism of adsorption of singlet lead (Pb0) by chlorine-modified activated carbon[J]. China Environ Sci,2019,39(5):1847−1853.
    [21] HE P, ZHANG X, PENG X, JIANG X, WU J, CHEN N. Interaction of elemental mercury with defective carbonaceous cluster[J]. J Hazard Mater (2015) 300 289-297.
    [22] NEESE F. The ORCA program system[J]. Wires Comput Mol Sci,2012,2(1):73−78. doi: 10.1002/wcms.81
    [23] RéMY S, PRUDENT P, HISSLER C, PROBST J L, KREMPP G. Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors[J]. Chemosphere,2003,52(3):635−644. doi: 10.1016/S0045-6535(03)00245-5
    [24] 李明晖. 飞灰中未燃尽碳及氧化钙表面吸附砷的机理研究[D]. 北京: 华北电力大学, 2019.

    LI Minghui. Mechanistic study of arsenic adsorption on the surface of unburned carbon and calcium oxide in fly ash[D]. Beijing: North China Electric Power University, 2019.
    [25] MA D, ZENG Z, LIU L, HUANG X, JIA Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers[J]. J Phys Chem C,2019,123(31):19066−19076. doi: 10.1021/acs.jpcc.9b05250
    [26] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−592. doi: 10.1002/jcc.22885
  • 加载中
图(6)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-03-18
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回