留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2/C3H6O在金属氧化物耦合吡咯氮生物炭表面的共/竞吸附机理研究

汪辉春 花昌豪 陈萍 顾明言 龚成 邹帅 汪一

汪辉春, 花昌豪, 陈萍, 顾明言, 龚成, 邹帅, 汪一. CO2/C3H6O在金属氧化物耦合吡咯氮生物炭表面的共/竞吸附机理研究[J]. 燃料化学学报(中英文), 2024, 52(2): 206-217. doi: 10.19906/j.cnki.JFCT.2023059
引用本文: 汪辉春, 花昌豪, 陈萍, 顾明言, 龚成, 邹帅, 汪一. CO2/C3H6O在金属氧化物耦合吡咯氮生物炭表面的共/竞吸附机理研究[J]. 燃料化学学报(中英文), 2024, 52(2): 206-217. doi: 10.19906/j.cnki.JFCT.2023059
WANG Huichun, HUA Changhao, CHEN Ping, GU Mingyan, GONG Cheng, ZOU Shuai, WANG Yi. Study on co/competitive adsorption mechanism of CO2/C3H6O on the surface of metal oxide-coupled pyrrole nitrogen biochar[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 206-217. doi: 10.19906/j.cnki.JFCT.2023059
Citation: WANG Huichun, HUA Changhao, CHEN Ping, GU Mingyan, GONG Cheng, ZOU Shuai, WANG Yi. Study on co/competitive adsorption mechanism of CO2/C3H6O on the surface of metal oxide-coupled pyrrole nitrogen biochar[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 206-217. doi: 10.19906/j.cnki.JFCT.2023059

CO2/C3H6O在金属氧化物耦合吡咯氮生物炭表面的共/竞吸附机理研究

doi: 10.19906/j.cnki.JFCT.2023059
基金项目: 国家自然科学基金青年项目(52206129),安徽省自然科学基金青年项目(2208085QE158)和煤燃烧国家重点实验室开放基金(FSKLCCA2206)资助
详细信息
    通讯作者:

    Tel:18395581520,E-mail: chp0109@126.com

  • 中图分类号: TK6

Study on co/competitive adsorption mechanism of CO2/C3H6O on the surface of metal oxide-coupled pyrrole nitrogen biochar

Funds: The project was supported by the National Natural Science Foundation of China Youth Program (52206129), Natural Science Foundation of Anhui Province (2208085QE158), State Key Laboratory of Coal Combustion Open Fund (FSKLCCA2206)
  • 摘要: 本研究采用密度泛函理论,通过比较吸附量、吸附能以及态密度和电荷差分密度的分析,探究了不同金属氧化物耦合吡咯氮生物炭(CN5@MOx,MOx=ZnO、CaO、Na2O)表面CO2与C3H6O(CO2&C3H6O)的吸附机理。首先从CO2/C3H6O单组分方面计算了其在CN5@MOx表面吸附量和吸附能,计算结果表明,在333 K、100 kPa时CN5@Na2O表面对CO2/C3H6O单组分吸附量分别为3.65、15.34 mmol/g,吸附能分别为−145.86、−132.47 kJ/mol,均高于CO2/C3H6O单组分在CN5@CaO及CN5@ZnO表面吸附。得出Na2O掺杂吡咯氮生物炭对CO2/C3H6O单组分吸附效果最优。进一步研究了CO2&C3H6O在CN5@MOx表面共/竞吸附及机理。计算结果表明,CO2&C3H6O在CN5@Na2O、CN5@CaO、CN5@ZnO表面吸附存在临界温度(分别为333、353、393 K),超过临界温度以后CO2&C3H6O共存体系在CN5@MOx表面吸附量较CO2/C3H6O单组分有所提高。CO2&C3H6O在CN5@Na2O、CN5@CaO、CN5@ZnO表面吸附能分别比CO2或C3H6O单组分吸附时至少高141.59、112.77、31.75 kJ/mol,CN5@MOx表面对CO2和C3H6O的吸附表现为协同促进作用,且CN5@Na2O对CO2&C3H6O共同吸附效果最佳。采用电荷差分密度和态密度分析CO2&C3H6O在CN5@MOx表面协同吸附作用机理,得出CO2的吸附作用力是通过C3H6O与CO2的间接相互作用产生的,Na2O中Na与C3H6O电子云重叠,发生电荷转移,增强了两者间相互作用力,CN5@Na2O表面C3H6O与CN5在p轨道主要共振峰结合能较CN5@ZnO低了3.43 eV,使得C3H6O在CN5@Na2O表面吸附最稳定。
  • FIG. 2929.  FIG. 2929.

    FIG. 2929.  FIG. 2929.

    图  1  C-N5片段

    Figure  1  C-N5 fragments

    图  2  不同生物质炭优化后的构型

    Figure  2  Optimized configuration of different biochars

    图  3  CN5、CN5@MOx构型孔径分布

    Figure  3  CN5, CN5@MOx configuration pore size distribution

    图  4  CN5与ZnO在Top、Bridge、Hollow位点耦合构型

    Figure  4  CN5 and ZnO are coupled at the Top, Bridge and Hollow sites

    图  5  CN5与ZnO不同耦合位点吸附CO2

    Figure  5  CN5 adsorbs CO2 at different coupling sites with ZnO

    图  6  吸附量随温度的变化

    Figure  6  Adsorption capacity varies with temperature

    图  7  C3H6O在不同金属氧化物耦合含吡咯氮生物质炭表面的吸附构型

    Figure  7  Adsorption configuration of C3H6O on the surface of pyrrole nitroza-containing biochar coupled with different metal oxides

    图  8  (a)、(b)、(c)分别为C3H6O在不同生物质炭表面吸附电荷差分密度图

    Figure  8  (a), (b) and (c) were the differential density maps of C3H6O adsorbed charges on different biochar surfaces (blue and yellow regions gained and lost electrons, respectively)

    图  9  C3H6O在CN5@MOx表面的PDOS谱图

    Figure  9  PDOS diagram of C3H6O on the surface of the CN5@MOx

    图  10  CO2在不同金属氧化物耦合含吡咯氮生物质炭表面的吸附构型

    Figure  10  Adsorption configuration of CO2 coupled with pyrrole nitrogen-containing biochar in different metal oxides

    图  11  (a)、(c)、(e)、(h)为吸附电荷差分密度图;(b)、(d)、(f)、(g)、(i)、(j)为剖面图

    Figure  11  (a), (c), (e), (h) are the differential density diagram of the adsorption charge; (b), (d), (f), (g), (i), (j) are the profile diagrams (blue and red areas gain and loss of electrons, respectively)

    图  12  CO2&C3H6O在CN5@ZnO、CN5@CaO、CN5@Na2O上吸附PDOS谱图

    Figure  12  CO2&C3H6O adsorbed PDOS on CN5@ZnO, CN5@CaO and CN5@Na2O

    表  1  CN5、CN5@MOx构型比表面积和孔容

    Table  1  CN5, CN5@MOx configuration specific surface area (SBET) and pore volume (vTotal)

    SampleSBET/(m2·g−1)vTotal/(cm3·g−1)
    CN51803.370.70
    CN5@ZnO1912.310.83
    CN5@CaO1576.900.69
    CN5@Na2O1678.840.68
    下载: 导出CSV

    表  2  CN5与ZnO不同耦合位点优化平衡能量

    Table  2  CN5 and ZnO have different coupling sites to optimize the balance energy

    Coupling siteBalance energy/eV
    Top−74207.0723
    Bridge−74207.1353
    Hollow−74207.2676
    下载: 导出CSV

    表  3  CN5与ZnO不同耦合位点对CO2吸附能

    Table  3  CN5 and ZnO have different coupling sites for CO2 adsorption energy

    Coupling siteEads/eVEads/(kJ·mol−1)
    Top−1.23−119.05
    Bridge−1.20−116.19
    Hollow−1.15−111.05
    下载: 导出CSV

    表  4  C3H6O的吸附能

    Table  4  Calculation results of adsorption energy of C3H6O

    StructureEads/eVEads/(kJ·mol−1)
    CN5@ZnO−0.14944−14.42
    CN5@CaO−0.50754−48.97
    CN5@Na2O−1.37294−132.47
    下载: 导出CSV

    表  5  CO2/C3H6O吸附能

    Table  5  Calculation results of CO2/C3H6O adsorption energy

    StructureEads/(kJ·mol−1)
    CO2C3H6OCO2&C3H6O
    CO2//C3H6OC3H6O⊥CO2CO2⊥C3H6O
    CN5@ZnO−120.88−14.42−138.63−140.21−152.63
    CN5@CaO−133.04−48.97−161.99−245.81−168.58
    CN5@Na2O−145.86−132.47−242.82−285.86−287.45
    下载: 导出CSV
  • [1] BORHAN A, YUSUP S, LIM J. W, et al. Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO2 adsorption[J]. Processes,2019,7(11):855. doi: 10.3390/pr7110855
    [2] GE C, LIAN D, CUI S, et al. Highly selective CO2 capture on waste polyurethane foam-based activated carbon[J]. Processes,2019,7(9):592. doi: 10.3390/pr7090592
    [3] BIRCH E L. A review of “climate change 2014: Impacts, adaptation, and vulnerability” and “climate change 2014: mitigation of climate change[J]. J Am Plan Assoc,2014,80:184−185. doi: 10.1080/01944363.2014.954464
    [4] KOU J, SUN L. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: Efficient adsorbents for selective CO2 capture[J]. Ind Eng Chem Res,2016,55(41):10916−10925.
    [5] JIANG Q, RENTSCHLER J, SETHIA G. Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process[J]. Chem Eng J,2013,230(16):380−388.
    [6] SUMIDA K, ROGOW D, MASON J, et al. Carbon dioxide capture in metal–organic frameworks[J]. Chem Rev,2012,112(2):724−781. doi: 10.1021/cr2003272
    [7] SUN L, KANG Y, SHI Y. Highly selective capture of the greenhouse gas CO2 in polymers[J]. ACS Sustainable Chem Eng,2015,3(12):3077−3085. doi: 10.1021/acssuschemeng.5b00544
    [8] XIN H, RADOSZ M, CYCHOSZ K, et al. CO2-filling capacity and selectivity of carbon nanopores: Synthesis, texture, and pore-size distribution from quenched-solid density functional theory(QSDFT)[J]. Environ Sci Technol,2011,45(16):7068−7074. doi: 10.1021/es200782s
    [9] JIMENEZ V, RAMIREZ-LUCAS A, DÍAZ J-A, et al. CO2 capture in different carbon materials[J]. Environ Sci Technol,2012,46(13):7407−7414. doi: 10.1021/es2046553
    [10] 卢立栋, 王浩, 郑娟等. 关中地区炼焦行业VOCs排放特征及潜势影响研究[J]. 环境科技,2021,34(4):11−16. doi: 10.3969/j.issn.1674-4829.2021.04.004

    LU Lidong, WANG Hao, ZHENG Juan, et al. Study on VOCs emission characteristics and potential impact of coking industry in Guanzhong area[J]. Environ Sci Technol,2021,34(4):11−16. doi: 10.3969/j.issn.1674-4829.2021.04.004
    [11] XIONG Z, JING W, YANG H, et al. Preparation of nitrogen-doped microporous modified biochar by high temperature CO2-NH3 treatment for CO2 adsorption: Effects of temperature[J]. RSC Adv,2016,6:98157−98166. doi: 10.1039/C6RA23748G
    [12] GONZ´ALEZ A S, PLAZA M G, RUBIERA F, et al. Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture[J]. Chem Eng J,2013,230:456−465. doi: 10.1016/j.cej.2013.06.118
    [13] PALLAR´ES J, GONZ´ALEZ-CENCERRADO A, ARAUZO I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam[J]. Biomass Bioenergy,2018,115:64−73. doi: 10.1016/j.biombioe.2018.04.015
    [14] LIU W J, JIANG H, TIAN K, et al. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture[J]. Environ Sci Technol,2013,47:9397−9403. doi: 10.1021/es401286p
    [15] CHATTERJEE R, SAJJADI B, MATTERN D, et al. Ultrasound cavitation intensified amine functionalization: A feasible strategy for enhancing CO2 capture capacity of biochar[J]. Fuel,2018,225:287−298. doi: 10.1016/j.fuel.2018.03.145
    [16] CHATTERJEE R, SAJJADI B, CHEN W, et al. Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption[J]. Front Energy Res,2020,8:1−18. doi: 10.3389/fenrg.2020.00001
    [17] XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy Environ Sci,2012,5(6):7323−7327. doi: 10.1039/c2ee21653a
    [18] MA X, CAO M, HU C. Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture[J]. J Mater Chem A,2012,1(3):913−918.
    [19] QI J, LI Y, WEI G, et al. Nitrogen doped porous hollow carbon spheres for enhanced benzene removal[J]. Sep Purif Technol,2017,188:112−118. doi: 10.1016/j.seppur.2017.07.021
    [20] KIM K-J, KANG C-S, YOU Y-J, et al. Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J]. Catal Today,2006,111:223−228. doi: 10.1016/j.cattod.2005.10.030
    [21] ZHOU K, MA W, ZENG Z, et al. Waste biomass-derived oxygen and nitrogen co-doped porous carbon/MgO composites as superior acetone adsorbent: Experimental and DFT study on the adsorption behavior[J]. Chem Eng J,2020,387:124173. doi: 10.1016/j.cej.2020.124173
    [22] YUE L, XIA Q, WANG L. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. J Colloid Interf Sci,2018,511:259−267. doi: 10.1016/j.jcis.2017.09.040
    [23] SETHIA G, SAYARI A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture[J]. Carbon,2015,93:68−80. doi: 10.1016/j.carbon.2015.05.017
    [24] 陈伟. 生物质富氮热解过程中氮的迁移转化及含氮目标产物调控研究[D]. 武汉: 华中科技大学, 2018.

    CHEN WEI. Research on nitrogen migration and transformation and regulation of nitrogen-containing target products during nitrogen-rich pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2018.
    [25] SANCHEZ Á, SUAREZ-GARCIA F, MARTINEZ-ALONSO A, et al. Influence of porous texture and surface chemistry on the CO adsorption capacity of porous carbons: Acidic and basic site interactions.[J]. ACS Appl Mater Inter,2014,6(23):21237−21247. doi: 10.1021/am506176e
    [26] WANG Y, HU X, HAO J, et al. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: A combined experimental and DFT calculation study[J]. Ind Eng Chem Res,2019,58(29):13390−13400. doi: 10.1021/acs.iecr.9b01454
    [27] LI L, MA X, CHEN R, et al. Nitrogen-containing functional groups-facilitated acetone adsorption by ZIF-8-derived porous carbon[J]. Materials,2018,11(1):159. doi: 10.3390/ma11010159
    [28] XU X, GUO Y, SHI R, et al. Natural honeycomb-like structure cork carbon with hierarchical micro-mesopores and N-containing functional groups for VOCs adsorption[J]. Appl Surf Sci,2021,565:150550. doi: 10.1016/j.apsusc.2021.150550
    [29] SUN H, WU C, SHEN B, ZHANG X, ZHANG Y, HUANG J. Progress in the development and application of CaO-based adsorbents for CO2 capture—a review, Mater[J]. Today Sustainable,2018,(1/2):1−27.
    [30] CHEN Z, SONG H, PORTILLO M, et al. Long-term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite[J]. Energy Fuels,2009,23(3):1437−1444. doi: 10.1021/ef800779k
    [31] ROUZITALAB Z, MOHAMMADY MAKLAVANY D, RASHIDI A, et al. Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO2 adsorption capacity and separation[J]. J Environ Chem Eng,2018,6:6653−6663. doi: 10.1016/j.jece.2018.10.035
    [32] LAHIJANI P, MOHAMMADI M, MOHAMED A R. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition[J]. J CO2 Util,2018,26:281−293. doi: 10.1016/j.jcou.2018.05.018
    [33] ZUBBRI N A, MOHAMED A R, KAMIUCHI N, et al. Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation[J]. Environ Sci Pollut Res,2020,27:11809−11829. doi: 10.1007/s11356-020-07734-3
    [34] ZHOU K, LI D, ZHOU C. Metal heteroatom (Mg, Cu and Co) and porous carbon co-doped MIL-101 composites with superior acetone capture capacity[J]. Chem Eng J,2022,430:132656. doi: 10.1016/j.cej.2021.132656
    [35] FANG M, WU K, MA X. Alkali metals modified porous carbon for enhanced methanol and acetone selective adsorption: A theoretical study[J]. Appl Surf Sci,2022,602:154271. doi: 10.1016/j.apsusc.2022.154271
    [36] ZHOU S, LI S, GUO C, et al. Edge-functionalized nanoporous carbons for high adsorption capacity and selectivity of CO2 over N2[J]. Appl Surf Sci,2017,410:259−266. doi: 10.1016/j.apsusc.2017.03.136
    [37] SHAFAWIi A N, MOHAMED A R, LAHIJANI P, et al. Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches[J]. J Environ Chem Eng,2021,9(6):106869. doi: 10.1016/j.jece.2021.106869
    [38] PERRY S T, HAMBLY E M, FLETCHER T H, et al. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization[J]. Proc Combust Inst,2000,28(2):2313−2319. doi: 10.1016/S0082-0784(00)80642-6
    [39] ZHANG X, XIE M, WU H, et al. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel,2020,265:116995. doi: 10.1016/j.fuel.2019.116995
    [40] ZHANG X, LV X, WU H, et al. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.1016/S1872-5813(20)30050-5
    [41] ZHANG H, JIANG X, LIU J, et al. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage,2014,83:167−176. doi: 10.1016/j.enconman.2014.03.067
    [42] FENG K, HU Y, CAO T. Mechanism of fuel gas denitration on the KOH-activated biochar surface[J]. J Phys Chem A,2022,126(2):296−305. doi: 10.1021/acs.jpca.1c09518
    [43] YU X, LIU S, LIN G, et al. Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption[J]. RSC Adv,2018,8(38):21541−21550. doi: 10.1039/C8RA03099E
    [44] 汪辉春, 顾明言, 陈萍, 等. 金属氧化物耦合含吡咯氮生物质炭吸附CO2的机理研究[J]. 燃料化学学报(中英文),2023,51(8):1182−1192.

    WANG Huichun, GU Mingyan, CHEN Ping, et al. Study on the mechanism of CO2 adsorption by metal oxide coupled with pyrrole nitrogen biochar[J]. J Fuel Chem Technol,2023,51(8):1182−1192.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  94
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-07-13
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回